1887

Abstract

An autotrophic, hyperthermophilic methanogen (M7) was isolated from a deep-sea hydrothermal chimney sample collected on the East Pacific Rise at depth of 2600 m. The coccoid-shaped cells are flagellated and exhibit a sligh tumbling motility. The temperature range for growth at pH 6·5 was 49–89 °C, with optimum growth at 80 °C. The optimum pH for growth was 6·5, and the optimum NaCI concentration for growth was around 25 g I. The new isolat used H and CO as the only substrates for growth and methane production. Tungsten, selenium and yeast extract stimulated growth significantly. In the presence of CO and H the organism reduced elemental sulphur to hydrogen sulphide. Growth was inhibited by chloramphenicol and rifampicin, but not by ampicillin, kanamycin, penicillin and streptomycin. The G+C content of the genomic DNA was 31 mol%. As determined by 16S rDNA gene sequence analysis, this organism was closely related to strain JAL-1. However, despite the high percentage of similarity between their 16S rDNA sequences (97·1 %), the DNA-DNA hybridization levels between these strains were less than 5%. On the basis of these observations and physiological traits, it is proposed that this organism should be placed in a new species, . The type strain is M7(= DSM 12094) During the course of this study, the 16S rDNA sequence analysis placed sp. strain AG86(= DSM 4213) as a close relative of . strain JAL-1. However, the weak level of DNA-DNA hybridization with this strain (< 10%) allowed the proposal that strain AG86also constitutes a new species, .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-2-583
1999-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/2/ijs-49-2-583.html?itemId=/content/journal/ijsem/10.1099/00207713-49-2-583&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L J., Woese C. R., Wolfe R. S. 1979; Methanogens : reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  2. Burggraf S., Fricke H., Neuner A., Kristjansson J., Rouviere P., Mandelco L., Woese C. R., Stetter K. O. 1990; Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Syst Appl Microbiol 13:33–38
    [Google Scholar]
  3. Canganella F., Jones W. J. 1994; Microbial characterization of thermophilic Archaea isolated from the Guaymas Basin hydrothermal vent. Curr Microbiol 28:299–306
    [Google Scholar]
  4. Charbonnier F., Forterre P. 1994; Comparison of plasmid DNA topology among mesophilic and thermophilic eubacteria and archaebacteria. J Bacteriol 176:1251–1259
    [Google Scholar]
  5. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  6. Hilpert R., Winter J., Hammes W., Kandler O. 1981; The sensitivity of archaebacteria to antibiotics. Zentbl Bakteriol Hyg 1 Abt Orig C211–20
    [Google Scholar]
  7. Hobbie J. E., Daley R. J., Jasper S. 1977; Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228
    [Google Scholar]
  8. Huber H., Thomm M., König H., Thies G., Stetter K. O. 1982; Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch Microbiol 132:47–50
    [Google Scholar]
  9. Huber R., Woese C. R., Langworthy T. A., Kristjansson J. K., Stetter K. O. 1990; Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the Thermotogales . J Arch Microbiol 154:105–111
    [Google Scholar]
  10. Ivanova T. L, Turova T. P., Antonov A. S. 1988; DNA-DNA hybridization studies on some purple non sulfur bacteria. Syst Appl Microbiol 10:259–263
    [Google Scholar]
  11. Jeanthon C., L’Haridon S., Reysenbach A., L, Vernet M., Messner P., Sleytr U. B., Prieur D. 1998; Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:913–919
    [Google Scholar]
  12. Johnson J. L. 1984; DNA reassociation and RNA hybridisation of bacterial nucleic acids. In Bergeys Manual of Systematic Bacteriology 18–11 Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  13. Jones W. J., Paynter M. J. B., Gupta R. 1983a; Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch Microbiol 135:91–97
    [Google Scholar]
  14. Jones W. J., Leigh J. A., Mayer F., Woese C. R., Wolfe R. S. 1983b; Methanococcus jannaschii, sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261
    [Google Scholar]
  15. Jones W. J., Stugard C. E., Jannasch H. W. 1989; Comparison of thermophilic methanogens from submarine hydrothermal vents. Arch Microbiol 151:314–318
    [Google Scholar]
  16. Kristjánsson J. K., Hjörleifsdóttir S., Marteinsson V. T., Alfredsson G. A. 1994; Thermus scotoductus, sp. nov., a pigment-producing thermophilic bacterium from hot tap water in Iceland and including Thermus sp. X-1. Syst Appl Microbiol 17:44–50
    [Google Scholar]
  17. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project. Nucleic Acids Res 24:82–85
    [Google Scholar]
  18. Marmur J., Doty D. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denat-uration temperature. J Mol Biol 5:109–118
    [Google Scholar]
  19. Miller T. L., Wolin M. J. 1974; A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Environ Microbiol 27:985–987
    [Google Scholar]
  20. Nilsen R. K., Torsvik T. 1996; Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl Environ Microbiol 62:728–731
    [Google Scholar]
  21. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48
    [Google Scholar]
  22. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; Fervidobacterium nodosum gen. nov. and spec, nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141:63–69
    [Google Scholar]
  23. Pfennig N., Widdel F., Trüper H. G. 1981; The dissimilatory sulfate-reducing bacteria. In The Prokaryotes, 2.926–940 Starr M., Stolp H., Trûper H. G., Balows A., Schlegel H. G. New York: Springer;
    [Google Scholar]
  24. Reysenbach A.-L, Giver L. J., Wickham G. S., Pace N. R. 1992; Differential amplification of rRNA by polymerase chain reaction. Appl Environ Microbiol 58:3417–3418
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Sleytr U. B., Messner P., Pum D. 1988; Analysis of crystalline bacterial surface layers by freeze-etching, metal-shadowing, negative staining and ultrathin sectioning. Methods Microbiol 20:29–60
    [Google Scholar]
  27. Sleytr U. B., Messner P., Pum D., Sóra D. 1996 Crystalline Bacterial Cell Surface Proteins London: Academic Press;
    [Google Scholar]
  28. Stadtman T. C., Barker H. A. 1951; Studies on the methane fermentation. X. A new formate-decomposing bacterium. Methanococcus vannieli. J Bacteriol 62:269–280
    [Google Scholar]
  29. Whitman W. B., Shieh J., Sohn S., Caras D. S., Premachandran U. 1986; Isolation and characterization of 22 mesophilic methanococci. Syst Appl Microbiol 7:235–240
    [Google Scholar]
  30. Whitman W. B., Bowen T. L, Boone D. R. 1992; The methanogenic bacteria. In The Prokaryotes, 2.719–767 Balows A., Trûper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  31. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, 2.3352–3378 Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  32. Woese C. R., Kandler O., Wheelis M. L. 1990; Towards a natural system of organisms : proposal for the domain Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579
    [Google Scholar]
  33. Zehnder A. J. B., Wuhrman K. 1976; Titanium(III) citrate as a non-toxic, oxidation-reduction buffering system for the culture of obligate anaerobes. Science 194:1165–1166
    [Google Scholar]
  34. Zhao H., Wood A. G., Widdel F., Bryant M. P. 1988; An extremely thermophilic Methanococcus from a deep-sea hydrothermal vent and its plasmid. Arch Microbiol 150:178–183
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-2-583
Loading
/content/journal/ijsem/10.1099/00207713-49-2-583
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error