1887

Abstract

Progenies from some wild-caught females of and three other sibling species are entirely female. The proclivity for production of unisexual female progeny by these flies was named the sex ratio (SR) trait and was originally thought to be genetic. However, experiments in the laboratory of Donald F. Poulson in the early 1960s demonstrated that this ‘trait’ was vertically transmitted and infectious, in that it could be artificially transferrd by injection from infected females to non-infected females. Motile, helical micro-organisms were observed in females showing the trait. In 1979, the SR organisms were designated as group II in the informal spiroplasma classification system. The organisms proved to be extremely fastidious, but were eventually cultivated in a very complex cell-free medium (H-2) after initial co-cultivation with insect cells. Cultivation in the H-2 medium and the subsequent availability of a triply cloned strain (DW-1 ) permitted comparaltiv studies. Cells of strain DW-1 were helical, motile filaments 200–250 nm in diameter and were bound by a single trilaminar membrane. Cells plated on 1·8% Noble agar formed small satellite-free colonies 60–70 μm in diameter with dense centres and uneven edges. The temperature range for growth was 26–30 °C; optimum growth occurred at 30 °C, with a doubling time in H-2 medium of 15·8 h. The strain passed through filters with 220 nm, but not 100 nm, pores. Reciprocal serological comparisons of strain DW-1 with representatives of other spiroplasma groups showed an extensive pattern of one-way crossing when strain DW-1 was used as antigen. However, variable, usually low-level reciprocal cross-reactions were observed between strain DW-1 and representatives of group I sub-groups. The genome size of strain DW-1 was 2040 kbp, as determined by PFGE. The G+C content was 26±1 mol%, as determined by buoyant density and melting point methods. The serological and molecular data indicate that strain DW-1 is separated from group I representative strains sufficiently to justify retention of its group status. Continued group designation is also indicated by the ability of SR spiroplasma to induce male lethality in , their vertical transmissibility and their extremely fastidious growth requirements. Group II spiroplasmas, represented by strain DW-1 (ATCC 43153 ), are designated .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-2-611
1999-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/2/ijs-49-2-611.html?itemId=/content/journal/ijsem/10.1099/00207713-49-2-611&mimeType=html&fmt=ahah

References

  1. Adams J. R., Whitcomb R. F., Tully J. G. 7 other authors 1997; Spiroplasma alleghenense sp. nov., a new species from the scorpion fly Panorpa helena (Mecoptera: Panorpidae). Int J Syst Bacteriol 47:759–762
    [Google Scholar]
  2. Aluotto B. B., Wittler R. G., Williams C. O., Faber J. E. 1970; Standardized bacteriologic techniques for characterization of Mycoplasma species. Int J Syst Bacteriol 20:35–58
    [Google Scholar]
  3. Carle P., Saillard C., Bové J. M. 1983a; DNA extraction and purification. Methods Mycoplasmol 1:295–299
    [Google Scholar]
  4. Carle P., Saillard C., Bové J. M. 1983b; Determination of guanine plus cytosine content of DNA. Methods Mycoplasmol 1:301–308
    [Google Scholar]
  5. Carle P., Laigret F., Tully J. G., Bové J. M. 1995; Heterogeneity of genome sizes within the genus Spiroplasma. Int J Syst Bacteriol 45:178–181
    [Google Scholar]
  6. Chen T. A., Liao C. H. 1975; Corn stunt spiroplasma: isolation, cultivation and proof of pathogenicity. Science 188:1015–1017
    [Google Scholar]
  7. Clark T. B., Whitcomb R. F., Tully J. G. 8 other authors 1985; Spiroplasma melliferum a new species from the honeybee (Apis mellifera). Int J Syst Bacteriol 35:296–308
    [Google Scholar]
  8. Cole R. M., Tully J. G., Popkin T. J., Bové J. M. 1973; Morphology, ultrastructure, and bacteriophage infection of the helical mycoplasma-like organism (Spiroplasma citri gen. nov., sp. nov.) cultured from ‘stubborn’ disease of citrus. J Bacteriol 115:367–386
    [Google Scholar]
  9. Davis R. E., Whitcomb R. F., Chen T. A., Granados R. R. 1972; Current status of the aetiology of corn stunt disease. In Pathogenic Mycoplasmas (Ciba Foundation Symposium)205–225 Elliott K., Birch J. Amsterdam: Associated Scientific Publishers;
    [Google Scholar]
  10. Hackett K. J., Lynn D. E. 1985; Cell-assisted growth of a fastidious spiroplasma. Science 230:825–827
    [Google Scholar]
  11. Hackett K. J., Lynn D. E. 1995; Insect cell culture approaches in cultivating spiroplasmas. In Molecular and Diagnostic Procedures in Mycoplasmology 155–64 Razin S. Tully J. G. San Diego, CA: Academic Press;
    [Google Scholar]
  12. Hackett K. J., Lynn D. E., Williamson D. L., Ginsberg A., Whitcomb R. F. 1986; Cultivation of the Drosophila sex ratio spiroplasma. Science 232:1253–1255
    [Google Scholar]
  13. Hackett K. J., Whitcomb R. F., Tully J. G. 9 other authors 1993; Spiroplasma insolitum sp. nov., a new species of group I spiroplasma with an unusual DNA base composition. Int J Syst Bacteriol 43:272–277
    [Google Scholar]
  14. Hurst G. D. D., Schulenberg J. H. G., Majerus T. M. O., Bertrand D., Zakharov I. A., Baungaard J., Volkl W., Stouthamer R., Majerus M. E. N. 1999; Invasion of one insect species, Adalia bipunctata by two different male-killing bacteria. Insect Mol . Biol133–140
    [Google Scholar]
  15. International Committee on Systematic Bacteriology Subcommittee on the taxonomy of Mollicutes 1995; Revised minimum standards for descriptions of new species of the class Mollicutes (Division Tenericutes). Int J Syst Bacteriol 45:605–612
    [Google Scholar]
  16. Konai M., Clark E. A., Camp M., Koch A. L., Whitcomb R. F. 1996; Temperature ranges, growth optima, and growth rates of Spiroplasma (Spiroplasmataceae class Mollicutes) species. Curr Microbiol 32:314–319
    [Google Scholar]
  17. Malogolowkin C., Poulson D. F. 1957; Infective transfer of maternally inherited abnormal sex-ratio in Drosophila willistoni. Science 126:32
    [Google Scholar]
  18. Malogolowkin C., Poulson D. F., Wright E. Y. 1959; Experimental transfer of maternally inherited abnormal sex-ratio in Drosophila willistoni. Genetics 44:59–74
    [Google Scholar]
  19. Poulson D. F. 1963; Cytoplasmic inheritance and hereditary infections in Drosophila. In Methodology in Basic Genetics Appendix III404–424 Burdette W. J. San Francisco, CA: Holden Day;
    [Google Scholar]
  20. Poulson D. F., Sakaguchi B. 1961; Nature of “sex-ratio” agent in Drosophila. Science 133:1489–1490
    [Google Scholar]
  21. Rochford R., Dougherty E. M., Lynn D. E. 1984; Establishment of a cell line from embryos of the cabbage looper, Trichoplusia ni (Hubner). In Vitro 20:823–825
    [Google Scholar]
  22. Saglio P., L'Hospital M., Lafleche D., Dupont G., Bové J. M., Tully J. G., Freundt E. A. 1973; Spiroplasma eitrigen and sp. n.: a mycoplasma-like organism associated with “ stubborn ” disease of citrus. Int J Syst Bacteriol 23:191–204
    [Google Scholar]
  23. Saillard C., Vignault J. C., Bove J. M. 8 other authors 1987; Spiroplasma phoeniceum sp. nov., a new plant-pathogenic species from Syria. Int J Syst Bacteriol 37:106–115
    [Google Scholar]
  24. Sakaguchi B., Poulson D. F. 1963; Interspecific transfer of the “ sex-ratio ” condition from Drosophila willistoni to D melano-gaster. Genetics 48:841–861
    [Google Scholar]
  25. Stevens C., Tang A. Y., Jenkins E. 12 other authors 1997; Spiroplasma lampyridicola sp. nov., from the firefly beetle Photuris pennsylvanicus. Int J Syst Bacteriol 47:709–712
    [Google Scholar]
  26. Tully J. G. 1983a; Cloning and filtration techniques for mycoplasmas. Methods Mycoplasmol 1:173–177
    [Google Scholar]
  27. Tully J. G. 1983b; Tests for digitonin sensitivity and sterol requirement. Methods Mycoplasmol 1:355–362
    [Google Scholar]
  28. Tully J. G., Bove J. M., Laigret F., Whitcomb R. F. 1993; Revised taxonomy of the class Mollicutes proposed elevation of a monophyletic cluster of arthropod-associated mollicutes to ordinal rank (Entomoplasmatales ord. nov.), with provision for familial rank to separate species with nonhelical morphology (Entomoplasmataceae fam. nov.) from helical species (Spiroplasmataceae), and emended descriptions of the order Myco-plasmatales, family Mycoplasmataceae. Int J Syst Bacteriol 43:378–385
    [Google Scholar]
  29. Weisburg W. G., Tully J. G., Rose D. L. 9 other authors 1989; A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol 171:6455–6467
    [Google Scholar]
  30. Whitcomb R. F. 1983; Culture media for spiroplasmas. Methods Mycoplasmol 1:147–158
    [Google Scholar]
  31. Whitcomb R. F., Hackett K. J. 1986; Cloning by limiting dilution in liquid media: an improved alternative for cloning mollicute species. Program and Abstracts of the 6th International Congress of the International Organization for Mycoplasmology, Birmingham, AL 26–31 August 1986 167
    [Google Scholar]
  32. Whitcomb R. F., Tully J. G., Clark J. G., Williamson D. L., Bové J. M. 1982; Revised serological classification of spiroplasmas, new provisional groups, and recommendations for serotyping isolates. Curr Microbiol 7:291–296
    [Google Scholar]
  33. Whitcomb R. F., Chen T. A., Williamson D. L. 7 other authors 1986; Spiroplasma kunkelii sp. nov.: characterization of the etiological agent of corn stunt disease. Int J Syst Bacteriol 36:170–178
    [Google Scholar]
  34. Williamson D. L. 1969; The sex ratio spirochete in Drosophila robusta. Jpn J Genet 44: Suppl 136–41
    [Google Scholar]
  35. Williamson D. L. 1983; Specialized electron microscopic techniques for spiroplasmas in plant and insect tissues. Methods Mycoplasmol 1:71–76
    [Google Scholar]
  36. Williamson D. L., Poulson D. F. 1979; Sex ratio organisms (spiroplasmas) of Drosophila. In The Mycoplasmas 3175–208 Whitcomb R. F., Tully J. G. New York: Academic Press;
    [Google Scholar]
  37. Williamson D. L., Whitcomb R. F. 1974; Helical, wall-free prokaryotes in Drosophila, leafhoppers and plants. Colloq INSERM 33:283–290
    [Google Scholar]
  38. Williamson D. L., Whitcomb R. F. 1975; Plant mycoplasmas: a cultivable spiroplasma causes corn stunt disease. Science 188:1018–1020
    [Google Scholar]
  39. Williamson D. L., Whitcomb R. F., Tully J. G. 1978; The spiroplasma deformation test, a new serological method. Curr Microbiol 1:203–207
    [Google Scholar]
  40. Williamson D. L., Tully J. G., Whitcomb R. F. 1979; Serological relationships of spiroplasmas as shown by combined deformation and metabolism inhibition tests. Int J Syst Bacteriol 29:345–351
    [Google Scholar]
  41. Williamson D. L., Steiner T., McGarrity G. J. 1983; Spiroplasma taxonomy and identification of the sex ratio organisms: can they be cultivated?. Yale J Biol Med 56:583–592
    [Google Scholar]
  42. Williamson D. L., Hackett K. J., Wagner A. J., Cohen A. J. 1989; Pathogenicity of cultivated Drosophila willistoni spiroplasmas. Curr Microbiol 19:53–56
    [Google Scholar]
  43. Williamson D. L., Adams J. R., Whitcomb R. F., Tully J. G., Carle P., Konai M., Bové J. M., Henegar R. B. 1997; Spiroplasma platyhelix sp. nov., a new mollicute with unusual morphology and genome size from the dragonfly Pachydiplax longipennis. Int J Syst Bacteriol 47:763–766
    [Google Scholar]
  44. Williamson D. L., Whitcomb R. F., Tully J. G. 10 other authors 1998; Revised group classification of the genus Spiroplasma. Int J Syst Bacteriol 48:1–12
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-2-611
Loading
/content/journal/ijsem/10.1099/00207713-49-2-611
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error