1887

Abstract

A novel extremely thermophilic bacterium was isolated from the world's deepest sea-floor, the Mariana Trench Challenger Deep at a depth of 10897 m. Cells were Gram-reaction variable, non-spore-forming and non-motile rods without flagella. Growth was observed between 50 and 80 °C (optimum: 74–76 C; 90 min doubling time), pH 5·4 and 9·5 (optimum: pH 7·0–7·5) and 0·5 and 5% sea salts (optimum: 2 % sea salts). The isolate was a strictly aerobic heterotroph capable of utilizing as sole energy and carbon source: yeast extract, peptone, cellulose, starch, chitin, casein, Casamino acids, a variety of sugars, carboxylic acids and amino acids. The G+C content of the genomic DNA was 72·5 mol%. Phylogenetic analysis based on 16S rRNA sequences placed this aerobic, high-G+C-content bacterium among the members of the Gram-positive, low-G+C-content anaerobic thermophilic bacteria within the subphylum. On the basis of the physiological and molecular properties of the new isolate, the name gen. nov., sp. nov. (type strain 7p75a = JCM 10246) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-2-619
1999-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/2/ijs-49-2-619.html?itemId=/content/journal/ijsem/10.1099/00207713-49-2-619&mimeType=html&fmt=ahah

References

  1. Alfredsson G. A., Kristjansson J. K., Hjorleifsdottir S., Stetter K. O. 1988; Rhodothermus marinus gen. nov., sp. nov., a thermophilic, halophilic bacterium from submarine hot springs in Iceland. J Gen Microbiol 134:49–68
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  3. Amako K., Murata K., Ueda A. 1983; Structure of envelope of Escherichia coli observed by the rapid-freezing and substitution fixation method. Microbiol Immunol 27:95–99
    [Google Scholar]
  4. Antoine E., Cilia V., Meunier J. R., Guezennec J., Lesongeur F., Barbier G. 1997; Thermosipho melanensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales isolated from deep-sea hydrothermal vents in the southwestern Pacific Ocean. Int J Syst Bacteriol 47:1118–1123
    [Google Scholar]
  5. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethane-sulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791
    [Google Scholar]
  6. Baross J. A. 1995; Isolation, growth, and maintenance of hyperthermophiles. In Archaea: a Laboratory Manual. Thermophiles15–23 Robb F. T., Place A. R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  7. Blöchl E., Rachel R., Burggraf S., Hafenbradl D., Jannasch H. W., Stetter K. O. 1997; Pyrolobus fumarii gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles 1:14–21
    [Google Scholar]
  8. Brill J. A., Wiegel J. 1997; Differentiation between spore-forming and asporogenic bacteria using a PCR and Southern hybridization based method. J Microbiol Methods 31:29–36
    [Google Scholar]
  9. Brown D. P., Genova-Raeva L., Green B. D., Wilkinson S. R., Young M., Youngman P. 1994; Characterization of spoOA homologs in diverse Bacillus and Clostridium species identifies DNA binding domain. Mol Microbiol 14:411–426
    [Google Scholar]
  10. Canganella F., Jones W. J., Gambacorta A., Antranikian G. 1997a; Biochemical and phylogenetic characterization of two novel deep-sea Thermococcus isolates with potentially bio-technological applications. Arch Microbiol 167:233–238
    [Google Scholar]
  11. Canganella F., Gonzalez J. M., Yanagibayashi M., Kato C., Horikoshi K. 1997b; Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermococcus peptonophilus. Arch Microbiol 168:1–7
    [Google Scholar]
  12. Cato E. P., George W. L., Finegold S. M. 1986; Genus Clostridium. In Bergey’s Manual of Systematic Bacteriology 21141–1200 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  13. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826
    [Google Scholar]
  14. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad SciUSA 89:5685–5689
    [Google Scholar]
  15. Engle M., Li Y., Woese C. R., Wiegel J. 1995; Isolation and characterization of a novel alkalitolerant thermophile, Anaerobranca horikoshii gen. nov., sp. nov. Int J Syst Bacteriol 45:454–461
    [Google Scholar]
  16. Engle M., Li Y., Rainey F. A., DeBlois S., Mai V., Reichert A., Mayer F., Messner P., Wiegel J. 1996; Thermobrachium celere gen. nov., sp. nov., a rapidly growing thermophilic, alkalitolerant, and proteolytic obligate anaerobe. Int J Syst Bacteriol 46:1025–1033
    [Google Scholar]
  17. Fortaine F. E., Peterson W. H., McCoy E., Johnson M. J., Ritter G. J. 1942; A new type of glycose fermentation by Clostridium thermoaceticum n. sp. J Bacteriol 43:701–715
    [Google Scholar]
  18. Godfroy A., Meunier J.-R., Guezennec J., Lesongeur F., Raguenes G., Rimbault A., Barbier G. 1996; Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the North Fiji Basin. Int J Syst Bacteriol 46:1113–1119
    [Google Scholar]
  19. Godfroy A., Lesongeur F., Raguenes G., Querellou J., Antoine E., Meunier J.-R., Guezennec J., Barbier G. 1997; Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 47:622–626
    [Google Scholar]
  20. Gonzalez J. M., Kato C., Horikoshi K. 1995; Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch Microbiol 164:159–164
    [Google Scholar]
  21. Harmsen H. J. M., Prieur D., Jeanthon C. 1997; Group-specific 16S rRNA-targeted oligonucleotide probes to identify thermophilic bacteria in marine hydrothermal vents. Appl Environ Microbiol 63:4061–4068
    [Google Scholar]
  22. Huber R., Wilharm T., Huber D., Trincone A., Burggraf S., Konig H., Rachel R., Rockinger I., Fricke H., Stetter K. O. 1992; Aquifex pyrophilus gen. nov. represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351
    [Google Scholar]
  23. Huber H., Jannasch H. W., Rachel R., Fuchs T., Stetter K. O. 1997; Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Syst Appl Microbiol 20:374–380
    [Google Scholar]
  24. Kato C., Li L., Tamaoka J., Horikoshi K. 1997; Molecular analyses of the sediment of the 11000-m deep Mariana Trench. Extremophiles 1:117–123
    [Google Scholar]
  25. Kawasumi T., Igarashi Y., Kodama T., Minoda Y. 1984; Hydrogenebacter thermophilus gen. nov. and sp. nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol 34:5–10
    [Google Scholar]
  26. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. J Mol Evol 16:111–120
    [Google Scholar]
  27. Kristjansson J. K., Alfredsson G. A. 1986; Life in Icelandic hot springs. Natturufraedingurinn 56:49–68
    [Google Scholar]
  28. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. 1993; The ribosomal database project. Nucleic Acids Res 21:3021–3023
    [Google Scholar]
  29. Lauerer G., Kristjansson J. K., Langworthy T. A., Konig H., Stetter K. O. 1986; Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97 °C. Syst Appl Microbiol 8:100–105
    [Google Scholar]
  30. Lee Y., Jain M. K., Lee C., Lowe S. E., Zeikus J. G. 1993; Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermo-anaerobium brockii Clostridium thermosulfurigenes and C thermohydrosulfuricum E100-69 as Thermoanarobacter brockii comb, nov., Thermoanaerobacterium thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricum comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int J Syst Bacteriol 43:41–51
    [Google Scholar]
  31. Liu S.-Y., Rainey F. A., Morgan H. W., Mayer F., Wiegel J. 1996; Thermoanaerobacterium aotearoense sp. nov., a slightly acidophilic, anaerobic thermophile isolated from various hot springs in New Zealand and emendation of the genus Thermoanaerobacterium. Int J Syst Bacteriol 46:388–396
    [Google Scholar]
  32. Love C. A., Patel B. K. C., Stackebrandt E., Ludwig W. 1993; The phylogenetic position of Dictyoglomus based on 16S rRNA sequence analysis. FEMS Microbiol Lett 107:317–320
    [Google Scholar]
  33. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118
    [Google Scholar]
  34. Marteinsson V. T., Birrien J.-L., Kristjansson J. K., Prieur D. 1995; First isolation of thermophilic aerobic non-sporulating heterotrophic bacteria from deep-sea hydrothermal vents. FEMS Microbiol Lett 18:163–174
    [Google Scholar]
  35. Mohr S. C., Sokolov N. V., He C.-M., Setlow P. 1991; Binding of small, acid-soluble spore proteins from Bacillus subtilis changes the conformation of DNA from A to B. Proc Natl Acad SciUSA 88:77–81
    [Google Scholar]
  36. Moriya K., Inada T., Kyo M., Horikoshi K. 1995; Large-scale fermentation under high hydrostatic pressure using a newly developed deep-sea baro/thermophilic collection and cultivation system. J Mar Biotechnol 2:175–177
    [Google Scholar]
  37. Olsen G. J. 1988; Phylogenetic analysis using ribosomal RNA. Methods Enzymol 164:793–812
    [Google Scholar]
  38. Padilla J. A., Uno F., Yamada M., Namba H., Nii S. 1997; High-resolution immuno-scanning electron microscopy using a non-coating method: study of herpes simplex virus glyco-proteins on the surface of virus particles and infected cells. J Electron Microsc 46:171–180
    [Google Scholar]
  39. Porter K. G., Feig Y. S. 1980; The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25:943–948
    [Google Scholar]
  40. Sako Y., Takai K., Ishida Y., Uchida A., Katayama Y. 1996; Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol 46:1099–1104
    [Google Scholar]
  41. Sanger F., Coulson A. R., Hong G. F., Hill O. F., Petersen G. B. 1982; Nucleotide sequence of bacteriophage λ DNA. J Mol Biol 162:729–773
    [Google Scholar]
  42. Setlow P. 1988; Small, acid-soluble spore proteins of Bacillus species : structure, synthesis, genetics function, and degradation. Annu Rev Microbiol 42:319–338
    [Google Scholar]
  43. Slobodkin A., Reysenbach A.-L., Mayer F., Wiegel J. 1997; Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov. Int J Syst Bacteriol 47:969–974
    [Google Scholar]
  44. Stackebrandt E., Sproer C., Rainey F. A., Burghardt J., Pauker O., Hippe H. 1997; Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bacteriol 47:1134–1139
    [Google Scholar]
  45. Svetlitshnyi V., Rainey F., Wiegel J. 1996; Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum. Int J Syst Bacteriol 46:1131–1137
    [Google Scholar]
  46. Takami H., Inoue A., Fuji F., Horikoshi K. 1997; Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152:279–285
    [Google Scholar]
  47. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128
    [Google Scholar]
  48. Wiegel J., Ljungdahl G. 1986; Genus Thermoanaerobacter. In Bergey’s Manual of Systematic Bacteriology 21141–1200 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  49. Wiegel J., Braun M., Gottschalk G. 1981; Clostridium thermoautotrophicum sp. nov., a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr Microbiol 5:255–260
    [Google Scholar]
  50. Woese C. R., Achenbach L., Rouviere P., Mandelco L. 1991; Archaeal phylogeny : re-examination of the phylogenetic position of Archaeglobus fulgidus in light of certain composition induced artifacts. Syst Appl Microbiol 14:364–371
    [Google Scholar]
  51. Wood P. J., Erfle J. D., Teather R. M. 1988; Use of complex formation between Congo Red and polysaccharides in detection and assay of polysaccharide hydrolases. Methods in Enzymol 160:59–74
    [Google Scholar]
  52. Zillig W., Holz I., Janekovic D., Klenk H.-P. 7 other authors 1990; Hyperthermus butylicus a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 111:3959–3965
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-2-619
Loading
/content/journal/ijsem/10.1099/00207713-49-2-619
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error