1887

Abstract

A new purple sulfur bacterium was isolated from microbial films on decaying plant mass in the near-shore area of the soda lake Malyi Kasytui (pH 9·5, 0·2% salinity) located in the steppe of the Chita region of south-east Siberia. Single cells were vibrioid- or spiral-shaped (3–4μm wide and 7–20 μm long) and motile by means of a polar tuft of flagella. Internal photosynthetic membranes were of the lamellar type. Lamellae almost filled the whole cell, forming strands and coils. Photosynthetic pigments were bacteriochlorophy II and carotenoids of the spirilloxanthin group. The new bacterium was strictly anaerobic. Under anoxic conditions, hydrogen sulfide and elemental sulfur were used as photosynthetic electron donors. During growth on sulfide, sulfur globules were formed as intermediate oxidation products. They were deposited outside the cytoplasm of the cells, in the peripheral periplasmic space and extracellularly. Thiosulfate was not used. Carbon dioxide, acetate, pyruvate, propionate, succinate, fumarate and malate were utilized as carbon sources. Optimum growth rates were obtained at pH 9·0 and optimum temperature was 30 °C. Good growth was observed in a mineral salts medium containing 5 g sodium bicarbonate I without sodium chloride. The new bacterium tolerated up to 60 g sodium chloride I and up to 80 g sodium carbonates I. Growth factors were not required. The DNA G+C composition was 56·0–57·4 mol %. Based on physiological, biochemical and genetic characteristics, the newly isolated bacterium is recognized as a new species of a new genus with the proposed name .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-2-697
1999-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/2/ijs-49-2-697.html?itemId=/content/journal/ijsem/10.1099/00207713-49-2-697&mimeType=html&fmt=ahah

References

  1. Dodgson K. S. 1961; Determination of inorganic sulphate in studies on the enzymatic and nonenzymatic hydrolysis of carbohydrate and other sulphate esters. Biochem J 78:312–329
    [Google Scholar]
  2. Favinger J., Stadtwald R., Gest H. 1989; Rhodospirillum centenum, sp. nov., a halotolerant cyst-forming anoxygenic photosynthetic bacterium. Antonie Leeuwenhoek 55:291–296
    [Google Scholar]
  3. Felsenstein J. 1989; phylip, phylogenetic inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  4. van Gemerden H., Mas J. 1995; Ecology of phototrophic sulfur bacteria. In Anoxygenic Photosynthetic Bacteria49–85 Blankenship R. E., Madigan M. T., Bauer C. E. The Netherlands; Kluwer:
    [Google Scholar]
  5. Gorlenko V. M., Dubinina G. A., Kusnetsov S. I. 1983; The ecology of aquatic microorganisms (monograph). In Binnengewässer254 Ohle W. Stuttgart: Schweizer-bartsche Verlagsbuchhandlung;
    [Google Scholar]
  6. Imhoff J. F. 1984; Reassignment of the genus Ectothiorhodospira Pelsh 1936 to a new family, Ectothiorhodospiraceae fam. nov., and emended description of the Chromatiaceae Bavendamm 1924. Int J Syst Bacteriol 34:338–339
    [Google Scholar]
  7. Imhoff J. F. 1989; The genus Ectothiorhodospira . In Bergeys Manual of Systematic Bacteriology 31654–1658 Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  8. Imhoff J. F. 1992; Taxonomy, phylogeny and general ecology of anoxygenic phototrophic bacteria. In Biotechnology Handbook of Photosynthetic Prokaryotes53–92 Carr N. G., Mann N. H. London & New York: Plenum;
    [Google Scholar]
  9. Imhoff J. F. 1995; Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. In Anoxygenic Photosynthetic Bacteria179–205 Blankenship R. E., Madigan M. T., Bauer C. E. The Netherlands; Kluwer:
    [Google Scholar]
  10. Imhoff J. F., Süling J. 1996; The phylogenetic relationship among Ectothiorhodospiraceae. A reevaluation of their taxonomy on the basis of 16S rDNA analyses. Arch Microbiol 165:106–113
    [Google Scholar]
  11. Imhoff J. F., Sahl H. G., Soliman G. S. H., Trüper H. G. 1979; The Wadi Natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiology J 1:219–234
    [Google Scholar]
  12. Imhoff J. F., Süling J., Petri R. 1998; Phylogenetic relationships among the Chromatiaceae, their taxonomic re-classification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa, and Thermochromatium . Int J Syst Bacteriol 48:1129–1143
    [Google Scholar]
  13. Isachenko B. L. 1951; Chloride, sulfate and soda lakes of the Kulundinskaya steppe. Izbrannye Trudy Nauka 2:143–162
    [Google Scholar]
  14. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism21–132 Munro H. M. New York: Academic Press;
    [Google Scholar]
  15. Marmur J. 1961; A procedure for the isolation DNA from microorganisms. J Molecular Biol 3:208–218
    [Google Scholar]
  16. van Niel C. B. 1931; On the morphology and physiology of the purple and green sulphur bacteria. Arch Mikrobiol 3:1–112
    [Google Scholar]
  17. Owen R. J., Hill L. R., Lapage S. P. 1969; Determination of DNA base composition from melting profiles in dilute buffers. Biopolymers 7:503–516
    [Google Scholar]
  18. Pattaragulwanit K., Brune D. C, Trüper H. G., Dahl C. 1998; Molecular genetic evidence for extracytoplasmic localization of sulfur globules in Chromatium vinosum. Arch Microbiol 169:434–444
    [Google Scholar]
  19. Pfennig N., Trüper H. G. 1974; The phototrophic bacteria. In Berge’s Manual of Determinative Bacteriology, 8.24–75 Buchanan R. E., Gibbons N. E. Baltimore: Williams & Wilkins;
    [Google Scholar]
  20. Ryter A., Kellenberger E. 1958; Etude au microscope electronique des plasmes contenant de l’acide deoxyribonucleique. 1. Les nucleotides des bactéries en croissance active. Z Naturforsch 13b:597–605
    [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-termination inhibitors. Proc Nati Acad Sci USA 74:5463–5467
    [Google Scholar]
  22. Sidorova T. N., Makhneva Z. K., Puchkova N. N., Gorlenko V. M., Moskalenko A. A. 1998; Characteristics of photosynthetic apparatus of Thiocapsa strain BM3 containing okenone as the main carotenoid. Mikrobiologiya 67:199–206
    [Google Scholar]
  23. Stackebrandt E., Murray R. G. E., Trüper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the ‘purple bacteria and their relatives’. Int J Syst Bacteriol 38:321–325
    [Google Scholar]
  24. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673–1680
    [Google Scholar]
  25. Trüper H. G., Schlegel H. G. 1964; Sulphur metabolism in Thiorhodaceae. 1. Quantitative measurements of growing cells of Chromatium okenii . Antonie Leeuwenhoek J Microbiol Serol 30:225–238
    [Google Scholar]
  26. Winogradsky S. 1888; Zur Morphologie und Physiologie der Schwefelbakterien. In Beitràge zur Morphologie und Physiologie der Bakterien, Heft 1 Leipzig: Felix;
    [Google Scholar]
  27. Woese C. R., Weisburg W. G., Hahn C. M., Paster B. J., Zablen L B., Lewis B. J., Macke T. J., Ludwig W., Stackebrandt E. 1985; The phylogeny of purple bacteria: the gamma subdivision. Syst Appl Microbiol 6:25–33
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-2-697
Loading
/content/journal/ijsem/10.1099/00207713-49-2-697
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error