1887

Abstract

Two new strains of marine purple bacteria, N1 and N2, were isolated from coastal sediment of the North Sea (Germany) with ferrous iron as the only electron donor for anoxygenic photosynthesis. The isolates are the first saltdependent, ferrous-iron-oxidizing purple bacteria characterized so far. Analysis of 16S rRNA gene sequences revealed an affiliation with the genus , which until now comprises only marine species. The sequence similarity of both strains was 95·2 %, and their closest relative was . Like all known species, the new strains had ovoid to rod-shaped cells, contained bacteriochlorophyll a and carotenoids of the spheroidene series, and were able to oxidize sulfide and thiosulfate. Like , both strains were unable to assimilate sulfate ; for growth they needed a reduced sulfur source, e.g. thiosulfate. In contrast to the new strains, none of the known species tested was able to oxidize ferrous iron or iron sulfide. In growth experiments, strains N1 and N2 oxidized 65 and 95%, respectively, of the ferrous iron supplied. Electron diffraction analysis revealed ferrihydrite as the main product of ferrous iron oxidation. In addition, traces of magnetite were formed. Strains N1 (= DSM 12328) and N2 (= DSM 12329) are described as sp. nov. and sp. nov., respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-2-729
1999-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/2/ijs-49-2-729.html?itemId=/content/journal/ijsem/10.1099/00207713-49-2-729&mimeType=html&fmt=ahah

References

  1. Aller R. C., Mackin J. E., Cox R. T. Jr 1986; Diagenesis of Fe and S in Amazonian inner shelf muds : apparent dominance of Fe reduction and implications for the genesis of ironstones. Continental Shelf Res 6:263–289
    [Google Scholar]
  2. Bak F., Scheff G., Jansen K.-H. 1991; A rapid and sensitive ion chromatographic technique for the determination of sulfate and sulfate reduction rates in freshwater lake sediments. FEMS Microbiol Ecol 85:23–30
    [Google Scholar]
  3. Brookins D. G. 1988 Eh-pH Diagrams for Geochemistry Berlin, Heidelberg & New York: Springer;
    [Google Scholar]
  4. Canfield D. E., Jørgensen B. B., Fossing H. 7 other authors 1993a; Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113:27–40
    [Google Scholar]
  5. Canfield D. E., Thamdrup B., Hansen J. W. 1993b; The anaerobic degradation of organic matter in Danish coastal sediments : iron reduction, manganese reduction and sulfate reduction. Geochim Cosmochim Acta 57:3867–3883
    [Google Scholar]
  6. DeSoete G. 1983; A least square algorithm for fitting additive trees to proximity data. Psychometrica 48:621–626
    [Google Scholar]
  7. Dobbin P. S., Warren L. H., Cook N. J., McEwan A. G., Powell A. K., Richardson D. J. 1996; Dissimilatory iron(III) reduction by Rhodobacter capsulatus. Microbiology 142:765–774
    [Google Scholar]
  8. Ehrenreich A. 1994; Die anaerobe Oxidation von Fe(II) durch Purpurbakterien. PhD thesis, University of Bremen
    [Google Scholar]
  9. Ehrenreich A., Widdel F. 1994; Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol 60:4517–4526
    [Google Scholar]
  10. Fachgruppe Wasserchemie G. D. C. 1991 Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlamm-Untersuchung ( Bd. II, El) Weinheim: VCH;
    [Google Scholar]
  11. Felsenstein J. 1993; Phylip (phylogenetic inference package) version 3.5.1. Department of Genetics University of Washington; Seattle, USA:
    [Google Scholar]
  12. Hansen T. A., Veldkamp H. 1973; Rhodopseudomonas sulfidophila nov. spec. a new species of the purple nonsulfur bacteria. Arch Microbiol 92:45–58
    [Google Scholar]
  13. Heising S., Schink B. 1998; Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain. Microbiology 144:2263–2269
    [Google Scholar]
  14. Heising S., Dilling W., Schnell S., Schink B. 1996; Complete assimilation of cysteine by a newly isolated non-sulfur purple bacterium resembling Rhodovulum sulfidophilum (Rhodobacter sulfidophilus). Arch Microbiol 165:397–401
    [Google Scholar]
  15. Hiraishi A., Ueda Y. 1994; Intrageneric structure of the genus Rhodobacter transfer of Rhodobacter sulfidophilus and related marine species to the genus Rhodovulum gen. nov. Int J Svst Bacteriol 44:15–23
    [Google Scholar]
  16. Hiraishi A., Ueda Y. 1995; Isolation and characterization of Rhodovulunz strictum sp. nov. and some other purple nonsulfur bacteria from colored blooms in tidal and seawater pools. Int J Syst Bacterial 45:319–326
    [Google Scholar]
  17. Imhoff J. F., Trüper H. G. 1992; The genus Rhodospirillum and related genera. In The Prokaryotes, 2nd edn.2141–2155 A., Triiper H. G., Dworkin M., Harder W., Schleifer K. -H. Berlin, Heidelberg & New York: Springer;
    [Google Scholar]
  18. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism21–132 Munro H. N. New York: Academic Press;
    [Google Scholar]
  19. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C R. 1994; The Ribosomal Database Project. Nucleic Acids Res 22:3485–3487
    [Google Scholar]
  20. Neutzling O., Imhoff J. F., Trüper H. G. 1984; Rhodopseudomonas adriatica sp. nov., a new species of the Rhodospirillaceae, dependent on reduced sulfur compounds. Arch Microbiol 137:256–261
    [Google Scholar]
  21. Overmann J., Fischer U., Pfennig N. 1992; A new purple sulfur bacterium from saline littoral sediments, Thiorhodovibrio winogradskyi gen. nov. and sp. nov. Arch Microbiol 157:329–335
    [Google Scholar]
  22. Pringsheim E. G. 1949; Iron bacteria. Biol Rev 24:200–245
    [Google Scholar]
  23. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092
    [Google Scholar]
  24. Straub K. L., Benz M., Schink B., Widdel F. 1996; Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62:1458–1460
    [Google Scholar]
  25. Sun M., Aller R. C., Lee C. 1991; Early diagenesis of chlorophyll-a in Long Island Sound sediments: a measure of carbon flux and particle reworking. J Mar Res 49:379–401
    [Google Scholar]
  26. Thamdrup B., Fossing H., Jørgensen B. B. 1994; Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim Cosmochim Acta 58:5115–5129
    [Google Scholar]
  27. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfatereducing bacteria. In The Prokaryotes, 2nd.3352–3378 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K.-H. Berlin, Heidelberg & New York: Springer;
    [Google Scholar]
  28. Widdel F., Schnell S., Heising S., Ehrenreich A., Assmus B., Schink B. 1993; Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–836
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-2-729
Loading
/content/journal/ijsem/10.1099/00207713-49-2-729
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error