1887

Abstract

A new, mesophillic, facultatively anaerobic, psychrotolerant bacterium, strain ANG-SQ1 (T=type strain), was isolated from a microbial community colonizing the accessory nidamental gland of the squid . It was selected from the community on the basis of its ability to reduce elemental sulfur. The cells are motile, Gram-negative rods (2·0–3·0 μm long, 0·4–0·6 μm wide). ANG-SQ1 grows optimally over the temperature range of 25–30 °C and a pH range of 6·5–7·5 °C in media containing 0·5 M NaCl. 16S rRNA sequence analysis revealed that this organism belongs to the γ-3 subclass of the . The closest relative of ANG-SQ1 is , with a 16S rRNA sequence similarity of 97·0%. Growth occurs with glucose, lactate, acetate, pyruvate, glutamate, citrate, succinate, Casamino acids, yeast extract or peptone as sole energy source under aerobic conditions. The isolate grows anaerobically by the reduction of iron, manganese, nitrate, fumarate, trimethylamine--oxide, thiosulfate or elemental sulfur as terminal electron acceptor with lactate. Growth of ANG-SQ1 was enhanced by the addition of choline chloride to growth media lacking Casamino acids. The addition of leucine or valine also enhanced growth in minimal growth media supplemented with choline. The results of both phenotypic and genetic characterization indicate that ANG-SQ1 is a species. Thus it is proposed that this new isolate be assigned to the genus and that it should be named sp. nov., in recognition of its association with .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-4-1341
1999-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/4/ijs-49-4-1341.html?itemId=/content/journal/ijsem/10.1099/00207713-49-4-1341&mimeType=html&fmt=ahah

References

  1. Aguirre A. A., Balazs H., Zimmerman B., Spraker T. R. 1994; Evaluation of Hawaiian green turtles (Chelonia mvdas) for potential pathogens associated with fibropapillomas. J Wild. Dis 30:8–15
    [Google Scholar]
  2. Alm E. W., Oerther D. B., Larsen N., Stahl D. A., Raskin L. 1996; The Oligonucleotide Probe Database. Appl Environ Microbiol 62:3557–3559
    [Google Scholar]
  3. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: re-evaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  4. Barbieri E., Gulledge J., Moser D. P., Chien C.-C. 1996; New evidence for bacterial diversity in the accessory nidamental gland of the squid Loligo pealei. Biol Bull 191:316–317
    [Google Scholar]
  5. Barbieri E., Barry K., Child A., Wainwright N. 1997; Antimicrobial activity in the microbial community of the accessory nidamental gland and egg membranes of Loligopealei (Cephalopoda: Loliginidae). Biol Bull 193:275–276
    [Google Scholar]
  6. Barbieri E., Paster B. J., Hughes D., Zurek L., Moser D. P., Teske A., Sogin M. L. 1999; The accessory nidamental gland and egg capsules of the squid Loligo pealei (Cephalopoda: Loliginidae) arc dominated by alpha protcobactcrial endobionts. Appl Environ Microbiol in press
    [Google Scholar]
  7. Biggs J., Epel D. 1991; Egg capsule sheath of Loligo opalescens Berry: structure and association with bacteria. J Exp Zool 259:263–267
    [Google Scholar]
  8. Bloodgood A. R. 1977; The squid accessory nidamental gland: ultrastructure and association with bacteria. Tissue Cell 9:197–208
    [Google Scholar]
  9. Both J., Kempf B., Bremer E. 1994; Osmoregulation in Bacillus subtilis·. synthesis of the osmoprotectant glycinebetaine from exogenously provided choline. J Bacteriol 176:5364–5371
    [Google Scholar]
  10. Bowman J. P., McCammon S. A., Nichols D. S., Skerratt J. H., Rea S. M., Nichols P. D., McMeekin T. A. 1997; Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5co3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacterial 47:1040–1047
    [Google Scholar]
  11. Canovas D., Vargas C., Csonka L. N., Ventosa A., Nieto J. J. 1996; Osmoprotectants in Halomonas elongata’. high-affinity betaine transport system and choline-betaine pathway. ./ Bacteriol 178:7221–7226
    [Google Scholar]
  12. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466
    [Google Scholar]
  13. Coyne V. E., Pillidge C. J., Sledjeski D. D., Hori H., Ortiz-Conde B. A., Muir D. G., Weiner R. M., Colwell R. R. 1989; Reclassification of Alteromonas colwelliana to the genus Shewanella by DNA-DNA hybridization, serology and 5S ribosomal RNA sequence data. Svst Appl Microbiol 12:275–279
    [Google Scholar]
  14. Csonka L., Hanson A. D. 1991; Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45:569–606
    [Google Scholar]
  15. Curtiss C. F. 1931 Bacteriology of butter. IV. Bacteriological studies on the surface taint of butter. Research Bulletin #145 Ames, IA: Agricultural Research Station, Iowa State College of Agriculture and Mechanical Arts;
    [Google Scholar]
  16. De Ley J. H., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA rehybridisation from renaturation rates. Eur J Biochem 12:133–142
    [Google Scholar]
  17. Deshnium P., Gombos A., Nishiyama Y., Murata N. 1997; The action in vivo of glycine betaine in enhancement of tolerance of Synechococcus sp. strain PCC7942 to low temperature. J Bacterial 179:339–344
    [Google Scholar]
  18. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethylsulphoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327
    [Google Scholar]
  19. Fox J. G., Yan L. L, Dewhirst F. E., Paster B. J., Shames B., Murphy J. C., Hayward A., Belcher J. C., Mendes E. N. 1995; Helicobacter bilis sp. nov., a novel Helicobacter species isolated from bile, livers, and intestines of aged, inbred mice. J Clin Microbiol 33:445–454
    [Google Scholar]
  20. Gauthier M. J. 1976; Altermonas rubra sp. nov., a new marine antibiotic-producing bacterium. Int J Sys Bacteriol 26:459–466
    [Google Scholar]
  21. Gauthier M. J., Breittmayer V. A. 1979; A new antibioticproducing bacterium from seawater: Alteromonas aurantia sp. nov. Int J Sys Bacteriol 29:366–372
    [Google Scholar]
  22. Getzel D. 1934; I microbi della ghiandola accessoria nidamentale nella Seppia officinalis. Arch Zool Itai 20:33–43
    [Google Scholar]
  23. Gil-Turnes M. S., Hay M. E., Fenical W. 1989; Symbiotic marine bacteria chemically defend crustacean embryos from pathogenic fungus. Science 246:116–118
    [Google Scholar]
  24. Hayashi H., Alia L., Mustardy L., Deshnium P., Ida M., Muratan N. 1997; Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142
    [Google Scholar]
  25. Horne D. S., Tomasz A. 1993; Possible role of choline-containing teichoic acid in the maintenance of normal cell shape and physiology in Streptococcus oralis. J Bacteriol 175:1717–1722
    [Google Scholar]
  26. Huß V. A. R., Festl H., Schleifer K.-H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192
    [Google Scholar]
  27. Jahnke K. D. 1992; basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73
    [Google Scholar]
  28. Jukes T. H. 1979 Choline. Kirk-Othmer Encyclopedia of Chemical Technology, 3rd. 619–28 Edited by Mark H. F., Othmer D. F., Overberger C. G., Seaborg G. T. New York: Wiley;
    [Google Scholar]
  29. Ko R., Tombras L., Smith G. M. 1994; Glycine-betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J Bacteriol 176:426–431
    [Google Scholar]
  30. Lovley D. R., Phillips E. J. S., Lonergan D. J. 1989; Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl Environ Microbiol 55:700–706
    [Google Scholar]
  31. Lum-Kong A. 1992; A histological study of the accessory reproductive organs of female Loligo forbesi (Cephalopoda: Loliginidae). J Zool Lond 226:469–490
    [Google Scholar]
  32. Lum-Kong A., Hastings T. S. 1992; The accessory nidamental glands of Loligo forbesi (Cephalopoda: Loliginidae): characterization of symbiotic bacteria and preliminary experiments to investigate factors controlling sexual maturation. J Zool Lond 228:395–403
    [Google Scholar]
  33. MacDonell M. T., Colwell R. R. 1985; Phylogeny of Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 6:171–182
    [Google Scholar]
  34. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McGaughey M. J., Woese C. R. 1997; The RDP (Ribosomal Database Project). Nucleic Acids Res 25:109–111
    [Google Scholar]
  35. Makemson J. C., Fulayfil N. R., Landry W., Van Ert L. M., Wimpee C. M., Widder E. A., Case J. F. 1997; Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran sea. Int J Syst Bacteriol1034–1039
    [Google Scholar]
  36. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acids from microorganisms. J Mol Biol 3:208–218
    [Google Scholar]
  37. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  38. Moat A. G. 1979 Metabolism and biosynthesis of lipids, sterols, and aromatic compounds. Microbial Physiology191–228 New York: Wiley;
    [Google Scholar]
  39. Moser D. P., Nealson K. H. 1996a; Growth of the facultative anaerobe Shewanellaputrefaciens by elemental sulfur reduction. Appl Environ Microbiol 62:2100–2105
    [Google Scholar]
  40. Moser D. P., Nealson K. H. 1996b Elemental sulfur reduction in facultative anaerobes as an educational tool. A Focus on Microbiology EducationWinter5-6 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  41. Moss C., Lambert M. A., Merwin W. H. 1974; Comparison of rapid analysis of bacterial fatty acids. Appl Microbiol 28:80–85
    [Google Scholar]
  42. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994 Determinative and cytological light microscopy. Methods for General and Molecular Bacteriology21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  43. Myers C. R., Nealson K. H. 1988; Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321
    [Google Scholar]
  44. Myers C. R., Nealson K. H. 1990; Respiration-linked proton translocation coupled to the anaerobic reduction of manganese (IV) and iron (III) in Shewanellaputrefaciens MR-1. J Bacteriol 172:6232–6238
    [Google Scholar]
  45. Nealson K. H. 1997; Sediment bacteria: who’s there, what are they doing, and what’s new?. Annu Rev Earth Planet Sci 25:403–434
    [Google Scholar]
  46. Nealson K. H., Meyers C. R. 1992; Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl Environ Microbiol 58:439–443
    [Google Scholar]
  47. Nealson K. H., Myers C. R., Wimpee B. 1991; Isolation and identification of manganese reducing bacteria, and estimates of microbial manganese reducing potential in the Black Sea. Deep Sea Res 38:S907–S920
    [Google Scholar]
  48. Owen H. A., Mattox K. R., Stewart K. D. 1990; Fine structure of the flagellar apparatus of Dinobryon cylindricum (Chrysophyceae). J Phycollfy131–141
    [Google Scholar]
  49. Parker L. L., Levin R. E. 1983; Relative incidence of Alteromonas putrefaciens and Pseudomonas putrefaciens in ground beef. Appl Environ Microbiol 45:769–799
    [Google Scholar]
  50. Podvin L., Reysset G., Hubert J., Sebald M. 1988; Presence of choline in teichoic acids of Clostridium acetobutylicum Nl-4 and choline inhibition of autolytic functions. J Gen Microbiol 134:1603–1609
    [Google Scholar]
  51. Sanchez-Beato A. R., Garcia J. L. 1996; Molecular characterization of a family of choline-binding proteins of Clostridium beijerinckii NC1B 8052. Evolution and gene redundancy in the prokaryotic cell. Gene 180:13–21
    [Google Scholar]
  52. Semple K. M., Westlake D. W. S. 1987; Characterization of iron reducing Alteromonas putrefaciens strains from oil field fluids. Can J Microbiol 33:366–371
    [Google Scholar]
  53. Smibert R. M., Krieg N. R. 1994 Phenotypic characterization. Methods for General and Molecular Bacteriology607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  54. Stenstrbm I.-M., Molin G. 1990; Classification of the spoilage flora of fish, with special reference to Shewanella putrefaciens. J Appl Bacteriol 68:601–618
    [Google Scholar]
  55. Swofford D. L. 1993 paup: phylogenetic analysis using parsimony, version 3.2. Champaign, IL: Illinois Natural History Survey;
    [Google Scholar]
  56. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128
    [Google Scholar]
  57. Van den Branden C. A., Lemaire R. J., Decleir W. 1979; La glande nidamentaires accessoire de Sepia officinalis L.: analysis des pigments des bacteries symbiotiques. Annu Soc R Zool Belg 108:123–129
    [Google Scholar]
  58. Venkateswaran K., Dollhopf M. E., Aller R., Stackebrandt E., Nealson K. H. 1998; Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds. Int J Syst Bacteriol 48:965–972
    [Google Scholar]
  59. Venkateswaran K., Moser D. P., Dollhopf M. E.10 other authors 1999; Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49:705–724
    [Google Scholar]
  60. Vogel B. F., Jogensen K., Christensen H., Olsen J. E., Gram L. 1997; Differentiation of Shewanella putrefaciens and Shewanella alga on the basis of whole-cell protein profiles, ribotyping, phenotypic characterization and 16S rRNA gene sequence analysis. Appl Environ Microbiol 63:2189–2199
    [Google Scholar]
  61. Wayne L. G., Brenner D. J., Colwell R. R.9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-4-1341
Loading
/content/journal/ijsem/10.1099/00207713-49-4-1341
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error