1887

Abstract

The detailed phylogenetic relationships for genus and related taxa were analysed by using DNA gyrase B subunit gene () sequences. Anaerobic bacteria in the phylum, namely genera and and , were clustered in the same branch and the facultative anaerobes and formeed a subcluster in the branch of the anaerobic bacteria. Phylogenetic analysis using 16S rDNA sequences gave a similar result but with a lower bootstrap value for each cluster. The of and were the same, and the of their chromosomal DNA, as determined by DNA-DNA hybridization, was greater than 70%. These genetic aspects led to the conclusion that IFO 15948 and IFO 14957 belong to a single species. Since was described first, as is a senior subjective synonym of . Therefore, the name should be retained and strain IFO 14957 should be reclassified as . However, the agar-degrading ability of strain IFO 14957 is a prominent biochemical characteristic. It is therefore proposed that strain IFO 14957 should be renamed biovar agarovorans.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-4-1551
1999-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/4/ijs-49-4-1551.html?itemId=/content/journal/ijsem/10.1099/00207713-49-4-1551&mimeType=html&fmt=ahah

References

  1. Bachmann B. J. 1955; Studies on Cytophaga fermentans, n.sp., a facultatively anaerobic lower myxobacterium. J Gen Microbiol 13:541–551
    [Google Scholar]
  2. Bernardet J.-F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. 1996; Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148
    [Google Scholar]
  3. Callies E., Mannheim W. 1978; Classification of the Flavo-bacterium-Cytophaga complex on the basis of respiratory quinones and fumarate respiration. Int J Syst Bacteriol 28:14–19
    [Google Scholar]
  4. Christensen P. J. 1977; The history, biology, and taxonomy of the Cytophaga group. Can J Microbiol 23:1599–1653
    [Google Scholar]
  5. Clayton R. A., Sutton G., Hinkle P. S. Jr, Bult C., Fields C. 1995; Interspecific variation in small-sub unit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa. Int J Syst Bacteriol 45:595–599
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229
    [Google Scholar]
  7. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170
    [Google Scholar]
  8. Gherna R., Woese C. R. 1992; A partial phylogenetic analysis of the Flavobacterium-Bacteroides phylum: basis for taxonomic restructuring. Syst Appl Microbiol 15:513–521
    [Google Scholar]
  9. Hamana K., Nakagawa Y., Yamasato K. 1995; Chemotaxonomic significance of polyamine distribution patterns in the Flavobacterium-Cytophaga complex and the related genera. Microbios 81:135–145
    [Google Scholar]
  10. Hayes P. R. 1977; A taxonomic study of flavobacteria and related gram negative yellow pigmented rods. J Appl Bacteriol 43:345–367
    [Google Scholar]
  11. Hiraishi A., Furuhata K., Matsumoto A., Koike K. A., Fukuyama M., Tabuchi K. 1995; Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments. Appl Environ Microbiol 61:2099–2107
    [Google Scholar]
  12. Jones D. T., Taylor W. R., Thornton J. M. 1992; The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282
    [Google Scholar]
  13. Kishino H., Miyata T., Hasegawa M. 1990; Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J Mol Evol 30:151–160
    [Google Scholar]
  14. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  16. Nakagawa Y., Yamasato K. 1993; Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol 139:1155–1161
    [Google Scholar]
  17. Nakagawa Y., Yamasato K. 1996; Emendation of the genus Cytophaga and transfer of Cytophaga agarovorans and Cytophaga salmonicolor to Marinilabilia gen. nov.: phylogenetic analysis of the Flavobacterium-Cytophaga complex. Int J Syst Bacteriol 46:599–603
    [Google Scholar]
  18. Nakagawa Y., Hamana K., Sakane T., Yamasato K. 1997; Reclassification of Cytophaga aprica (Lewin 1969) Reichenbach 1989 in Flammeovirga gen. nov. as Flammeovirga aprica comb, nov. and of Cytophaga diffluens (ex Stanier 1940; emend. Lewin 1969) Reichenbach 1989 in Persicobacter gen. nov. as Persicobacter diffluens comb. nov. Int J Syst Bacteriol 47:220–223
    [Google Scholar]
  19. Nakagawa Y., Sakane T., Yokota A. 1996; Transfer of ‘Pseudomonas riboflavina” (Foster 1944), a gram-negative, motile rod with long-chain 3-hydroxy fatty acids, to Devosia riboflavina gen. nov., sp. nov., nom. rev. Int J Syst Bacteriol 46:16–22
    [Google Scholar]
  20. Olsen G. J., Woese C. R. 1993; Ribosomal RNA: a key to phylogeny. FASEB J 7:113–123
    [Google Scholar]
  21. Oyaizu H., Komagata K. 1981; Chemotaxonomic and phenotypic characterization of the strains of species in the Flavobacterium-Cytophaga complex. J Gen Appl Microbiol 25:57–107
    [Google Scholar]
  22. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas. Int J Syst Bacteriol 23:333–339
    [Google Scholar]
  23. Paster B., Ludwig J. W., Weisburg W. G., Stackebrandt E., Hespell R. B., Hahn C. M., Reichenbach H., Stetter K. O., Woese C. R. 1985; A phylogenetic grouping of the bacteroides, cytophagas, and certain flavobacteria. Syst Appl Microbiol 6:34–42
    [Google Scholar]
  24. Paster B. J., Dewhirst F. E., Olsen I., Fraser G. J. 1994; Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria. J Bacteriol Y16:725–732
    [Google Scholar]
  25. Rainey F. A., Lang E., Stackebrandt E. 1994; The phylogenetic structure of the genus Acinetobacter. FEMS Microbiol Lett 124:349–353
    [Google Scholar]
  26. Reichenbach H. 1989 Genus I. Cytophaga. Bergey’s Manual of Systematic Bacteriology 32015–2050 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  27. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 11:916–929
    [Google Scholar]
  28. Segers P., Mannheim W., Vancanneyt M., De Brandt K., Hinz K.-H., Kersters K., Vandamme P. 1993; Riemerella anatipestifer gen. nov., comb, nov., the causative agent of septicemia anserum exsudativa, and its phylogenetic affiliation within the Flavobacterium-Cytophaga rRNA homology group. Int J Syst Bacteriol 43:768–776
    [Google Scholar]
  29. Shah H. N., Collins M. D. 1988; Proposal for reclassification of Bacteroides asaccharolyticus, Bacteroides gingivalis, and Bacteroides endodontalis in a new genus, Porphyromonas. Int J Syst Bacteriol 38:128–131
    [Google Scholar]
  30. Shewan J. M., McMeekin T. A. 1983; Taxonomy (and ecology) of Flavobacterium and related genera. Annu Rev Microbiol 37:233–252
    [Google Scholar]
  31. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  32. Stanier R. Y. 1940; Studies on the cytophagas. J Bacteriol 40:619–635
    [Google Scholar]
  33. Stanier R. Y. 1941; Studies on marine agar-digesting bacteria. J Bacteriol 41:527–559
    [Google Scholar]
  34. Stanier R. Y. 1942; The Cytophaga group: a contribution to the biology of myxobacteria. Bacteriol Rev 6:143–196
    [Google Scholar]
  35. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J. 1998; Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb, nov., Pedobacter piscium comb, nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. Proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48:165–177
    [Google Scholar]
  36. Takeuchi M., Yokoto A. 1992; Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb, nov., Sphingobacterium thalpophilum comb. nov. and two genospecies of the genus Sphingobacterium, and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum. J Gen Appl Microbiol 38:465–482
    [Google Scholar]
  37. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  38. Veldkamp H. 1961; A study of two marine agar-decomposing, facultatively anaerobic myxobacteria. J Gen Microbiol 26:331–342
    [Google Scholar]
  39. Watt P. M., Hickson I. D. 1994; Structure and function of type II DNA topoisomerases. Biochem J 303:681–695
    [Google Scholar]
  40. Weisburg W. G., Oyaizu Y., Oyaizu H., Woese C. R. 1985; Natural relationship between bacteroides and flavobacteria. J Bacteriol 164:230–236
    [Google Scholar]
  41. Winogradsky S. 1929; Etudes sur la microbiologie du sol. Sur la degradation de la cellulose dans le sol. Ann ‘Inst Pasteur 43:549–633
    [Google Scholar]
  42. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  43. Woese C. R., Stackebrandt E., Macke T. J., Fox G. E. 1985; A phylogenetic definition of the major eubacterial taxa. Syst Appl Microbiol 6:143–151
    [Google Scholar]
  44. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
  45. Yamamoto S., Harayama S. 1996; Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. Int J Syst Bacteriol 46:506–511
    [Google Scholar]
  46. Yano I., Tomiyasu I., Yabuuchi E. 1982; Long chain base composition of strains of three species of Sphingobacterium gen. nov. FEMS Microbiol Lett 15:303–307
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-4-1551
Loading
/content/journal/ijsem/10.1099/00207713-49-4-1551
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error