1887

Abstract

A new species of the genus , for which the name sp. nov. is proposed, was isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug, , found on sugar cane growing in Queensland and northern New South Wales, Australia. The nearest phylogenetic relatives in the α-subclass of the are and , which have 98·8–99·3% and 97·9–98·5% 16S rDNA sequence similarity, respectively, to members of . On the basis of the phylogenetic positioning of the strains, DNA reassociation studies, phenotypic tests and the presence of the Q10 ubiquinone, this new species was assigned to the genus . No single phenotypic characteristic is unique to the species, but the species can be differentiated phenotypically from closely related members of the acetic acid bacteria by growth in the presence of 0·01% malachite green, growth on 30% glucose, an inability to fix nitrogen and an inability to grow with the -amino acids asparagine, glycine, glutamine, threonine and tryptophan when -mannitol was supplied as the sole carbon and energy source. The type strain of this species is strain SRI 1794 (=DSM 12717).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-4-1681
1999-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/4/ijs-49-4-1681.html?itemId=/content/journal/ijsem/10.1099/00207713-49-4-1681&mimeType=html&fmt=ahah

References

  1. Asai T., Iizuka H., Komagata K. 1964; The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J Gen Appl Microbiol 10:95–126
    [Google Scholar]
  2. Ashbolt N.J., Inkerman P. A. 1990; Acetic acid bacterial biota of the pink sugarcane mealybug, Saccharococcus sacchari, and its environs. Appl Environ Microbiol 56:707–712
    [Google Scholar]
  3. Blake J. D., Clarke M. L., Richards G. N. 1984; Determination of d-gluconic, 5-keto-d-gluconic, 2-keto-d-gluconic and 2,5- diketo-d-gluconic acids by high-performance liquid chromatography. J Chromat 312:211–219
    [Google Scholar]
  4. Bulygina E. S., Gulikova O. M., Dikanskaya E. M., Netrusov A. I., Tourova T. P., Chumakov K. M. 1992; Taxonomic studies of the genera Acidomonas, Acetobacter and Gluconobacter by 5S ribosomal RNA sequencing. J Gen Microbiol 138:2283–2286
    [Google Scholar]
  5. Carr J. G. 1968 Method for identifying acetic acid bacteria. Identification Methods for Microbiologists1–8 Edited by Gibbs B. M., Shapton D. A. London: Academic Press;
    [Google Scholar]
  6. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466
    [Google Scholar]
  7. Cavalcante V. A., Dttbereiner J. 1988; A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108:23–31
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142
    [Google Scholar]
  9. De Ley J., Swings J., Gosselé F. 1984 Genus I. Acetobacter Beijerinck 1898, 215AL. Bergey’s Manual of Systematic Bacteriology 1268–274 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  10. Entani E., Ohmori S., Masai H., Suzuki K.-l. 1985; Acetobacter polyoxogenes sp. nov., a new species of an acetic acid bacterium useful for producing vinegar with high acidity. J Gen Appl Microbiol 31:475–490
    [Google Scholar]
  11. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327
    [Google Scholar]
  12. Fahmy F., Flossdorf J., Claus D. 1985; The DNA base composition of the type strains of the genus Bacillus. Syst Appl Microbiol 6:60–65
    [Google Scholar]
  13. Felsenstein J. 1993 phylip (Phylogeny Inference Package) version 3.5c. Distributed by author. Department of Genetics, University of Washington; Seattle, WA, USA:
    [Google Scholar]
  14. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170
    [Google Scholar]
  15. Frateur J. 1950; Essai sur la systématique des Acetobacters. Cellule 53:287–392
    [Google Scholar]
  16. Gillis M., De Ley J. 1980; Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter. Int J Syst Bacteriol 30:7–27
    [Google Scholar]
  17. Gillis M., Kersters K., Hoste B., Janssens D., Kroppenstedt R. M., Stephan M. P., Teixeira K. R. S., Döbereiner J., De Ley J. 1989; Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. Int J Syst Bacteriol 39:361–364
    [Google Scholar]
  18. Gosselé F., Swings J., Kersters K., De Ley J. 1983; Numerical analysis of phenotypic features and protein gel electropherograms of Gluconobacter Asai 1935 emend, mut. char. Asai, Iizuka, and Komagata 1964. Int J Syst Bacteriol 33:65–81
    [Google Scholar]
  19. Hippe H., Hagenauer A., Kroppenstedt R. M. 1997; Menadione requirement for sulphate-reduction in Desulfotomaculum aeronauticum, and emended species description. Syst Appl Microbiol 20:554–558
    [Google Scholar]
  20. Huss V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridisation from renaturation rates. Syst Appl Microbiol 4:184–192
    [Google Scholar]
  21. Inkerman P. A., Ashbolt N. J., Carver M., Williams D. J. 1986; Observations on the pink sugarcane mealybug, Saccharicoccus sacchari (Cockerell), in Australia (Homoptera: Pseudococcidae). Proceedings of the 19th Congress of the International Society for Sugarcane Technology, Jakarta, Indonesia 1:612–618
    [Google Scholar]
  22. Jahnke K.-D. 1992; BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73
    [Google Scholar]
  23. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. Mammalian Protein Metabolism21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  24. Kämpfer P., Meyer S., Müller H. E. 1997; Characterisation of Buttiauxella and Kluyvera species by analysis of whole cell fatty acid patterns. Syst Appl Microbiol 20:566–571
    [Google Scholar]
  25. Klatte S., Jahnke K.-D., Kroppenstedt R. M., Rainey F., Stackebrandt E. 1994; Rhodococcus luteus is a later subjective synonym of Rhodococcus fascians. Int J Syst Bacteriol 44:627–630
    [Google Scholar]
  26. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703
    [Google Scholar]
  27. Lane D. J. 1991 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics115–147 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  28. Li R. P., Macrae I. C. 1991; Specific association of diazotrophic Acetobacters with sugarcane. Soil Biol Biochem 23:999–1002
    [Google Scholar]
  29. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McGaughey W. J., Woese C. R. 1997; The RDP (Ribosomal Database Project). Nucleic Acids Res 25:109–111
    [Google Scholar]
  30. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  31. Micales B. K., Johnson J. L., Claus G. W. 1985; Deoxyribonucleic acid homologies among organisms in the genus Gluconobacter. Int J Syst Bacteriol 35:79–85
    [Google Scholar]
  32. Mukwaya G. M., Welch D. F. 1989; Subgrouping of Pseudomonas cepacia by cellular fatty acid composition. J Clin Microbiol 27:2640–2646
    [Google Scholar]
  33. Persoon C. H. 1822 Mycologia Europaea Section 1 96
    [Google Scholar]
  34. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  35. Sievers M., Teuber M. 1995; The microbiology and taxonomy of Acetobacter europaeus in commercial vinegar production. J Appl Bacteriol (Symposium Suppl.) 79:84S–95S
    [Google Scholar]
  36. Sievers M., Sellmer S., Teuber M. 1992; Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in central Europe. Syst Appl Microbiol 15:386–392
    [Google Scholar]
  37. Sievers M., Ludwig W., Teuber M. 1994a; Phylogenetic positioning of Acetobacter, Gluconobacter, Rhodopila and Acidiphilium species as a branch of acidophilic bacteria in the a-subclass of Proteobacteria based on 16S ribosomal DNA sequences. Syst Appl Microbiol 17:189–196
    [Google Scholar]
  38. Sievers M., Ludwig W., Teuber M. 1994b; Revival of the species Acetobacter methanolicus (ex Uhlig et al., 1986) nom. rev. Syst Appl Microbiol 17:352–354
    [Google Scholar]
  39. Skerman V. B. D. 1967 A Guide to the Identification of the Genera of Bacteria, 2nd. Baltimore: Williams & Wilkins;
    [Google Scholar]
  40. Sokollek S. J., Hertel C., Hammes W. P. 1998; Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations. Int J Syst Bacteriol 48:935–940
    [Google Scholar]
  41. Stackebrandt E., Charfreitag O. 1990; Partial 16S rRNA primary structure of five Actinomyces species: phylogenetic implications and development of an Actinomyces israelii- specific oligonucleotide probe. J Gen Microbiol 136:37–43
    [Google Scholar]
  42. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  43. Swings J. 1992 The Genera Acetobacter and Gluconobacter. The Prokaryotes2268–2286 Edited by Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  44. Swings J., Gillis M., Kersters K. 1992 Phenotypic identification of acetic acid bacteria. Identification Methods in Applied and Environmental Microbiology103–110 Edited by Board R. G., Jones D., Skinner F. A. Oxford: Blackwell Scientific;
    [Google Scholar]
  45. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128
    [Google Scholar]
  46. Uhlig H., Karbaum K., Steudel A. 1986; Acetobacter methanolicus sp. nov., an acidophilic facultatively methyl-otrophic bacterium. Int J Syst Bacteriol 36:317–322
    [Google Scholar]
  47. Urakami T., Tamaoka J., Suzuki K.-I., Komagata K. 1989; Acidomonas gen. nov., incorporating Acetobacter methanolicus as Acidomonas methanolica comb. nov. Int J Syst Bacteriol 39:50–55
    [Google Scholar]
  48. Yamada Y., Kondo K. 1984; Gluconacetobacter, a new subgenus comprising the acetate-oxidising acetic acid bacteria with ubiquinone-10 in the genus Acetobacter. J Gen Appl Microbiol 30:297–303
    [Google Scholar]
  49. Yamada Y., Nunoda M., Ishikawa T., Tahara Y. 1981; The cellular fatty acid composition in acetic acid bacteria. J Gen Appl Microbiol 27:405–417
    [Google Scholar]
  50. Yamada Y., Hoshino K.-I., Ishikawa T. 1997; The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotechnol Biochem 61:1244–1251
    [Google Scholar]
  51. Yamada Y., Hoshino K.-I., Ishikawa T. 1998; Gluconacetobacter nom. corrig. (Gluconoacetobacter [sic]). Validation of Publication of New Names and New Combinations Previously Effectively Published Outside the USB, List no. 64. Int J Syst Bacteriol 48:327–328
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-4-1681
Loading
/content/journal/ijsem/10.1099/00207713-49-4-1681
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error