1887

Abstract

A novel microbe was isolated from a geothermal vent in Yang-Ming National Park in northern Taiwan. This spherical microbe with mean cell diameter of 1·1·0·2 μm is a facultatively chemolithoautotrophic archaeon that grows on elemental sulfur and reduced sulfur compounds. The optimal pH and temperature for growth are 4·0 (pH range 2·0-6·0) and 80 °C (temperature range 65-95 °C). Its membranes contain the lipids calditoglycerocaldarchaeol and caldarchaeol, which are common to other members of the . Like and , the new isolate utilizes sugars and amino acids effectively as sole carbon sources. The G+C content of the genomic DNA was 42 mol%. DNA of the isolate hybridized weakly to the DNA of other species. Phylogenetic analysis of the 16S rRNA indicated that the new isolate represents a deep branch within the genus . On the basis of these properties, the new isolate appears to represent a new species of , for which the name sp. nov. is proposed. The type strain is strain YM1.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-4-1809
1999-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/4/ijs-49-4-1809.html?itemId=/content/journal/ijsem/10.1099/00207713-49-4-1809&mimeType=html&fmt=ahah

References

  1. Brock T. D., Brock K. M., Belly R. T., Weiss R. L. 1972; Sulfolobus·. a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68
    [Google Scholar]
  2. Chaw S. M., Sung H. M., Long H., Zharkikh A., Li W. H. 1995; The phylogenetic positions of the conifer genera Amentotaxus, Phyllocladus, and Nageia inferred from 18S rRNA sequences. J Mol Evol 41:224–230
    [Google Scholar]
  3. Chen J. S. 1989; Hot spring and geothermal sources in Taiwan. De-Tzu (Geology) 9:327–340
    [Google Scholar]
  4. De Rosa M., Gambacorta A. 1988; The lipids of archaebacteria. Prog Lipid Res 27:153–175
    [Google Scholar]
  5. De Rosa M., Gambacorta A., Bu’Lock J. D. 1975; Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius. J Gen Microbiol 86:156–164
    [Google Scholar]
  6. De Rosa M., Gambacorta A., Nicolaus B., Bu’Lock J. D. 1980; Complex lipids of Caldariella acidophila, a thermoacidophile archaebacterium. Phytochemistry 19:821–825
    [Google Scholar]
  7. De Rosa M., Gambacorta A., Nicolaus B., Chappe B., Albrecht P. 1983; Isoprenoid ethers; backbone of complex lipids of the archaebacterium Sulfolobus solfataricus. Biochim Biophys Acta 753:249–256
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  9. Furuya T., Nagano T., Itoh T., Kaneko H. 1980; A thermophilic acidophilic bacterium from a hot spring. Agric Biol Chern 44:517–521
    [Google Scholar]
  10. Goodman H. M., MacDonald R. J. 1979; Cloning of hormone genes from a mixture of cDNA molecules. Methods Enzymol 68:75–90
    [Google Scholar]
  11. Grogan D., Palm P., Zillig W. 1990; Isolate B12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov. Arch Microbiol 154:594–599
    [Google Scholar]
  12. Huber G., Stetter K. O. 1991; Sulfolobus metallicus sp. nov., a novel strictly chemolithoautotrophic thermophilic archaeal species of metal-mobilizers. Syst Appl Microbiol 14:372–378
    [Google Scholar]
  13. Huber G., Spinner C., Gambacorta A., Stetter K. O. 1989; Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst Appl Microbiol 12:38–47
    [Google Scholar]
  14. Kellenberger E., Ryter A., Sechand J. 1958; Electron microscope study of DNA-containing plasma. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol 4:671–676
    [Google Scholar]
  15. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120
    [Google Scholar]
  16. Kurosawa N., Itoh Y. H. 1993; Nucleotide sequence of the 16S rRNA gene from thermoacidophilic archaea Sulfolobus acidocaldarius ATCC 33909. Nucleic Acids Res 21:357
    [Google Scholar]
  17. Kurr M., Huber R., König H., Jannasch H. W., Fricke H., Trincone A., Kristjansson J. K., Stetter K. O. 1991; Methanopyrus kandiert, gen. and sp. nov., represents a novel group of hyperthermophilic methanogens, growing at 110 °C. Arch Microbiol 156:239–247
    [Google Scholar]
  18. Lo S. L, Montague C. E., Chang E. L. 1989; Purification of glycerol dialkyl nonitol tetraether from Sulfolobus acidocaldarius. J Lipid Res 30:944–949
    [Google Scholar]
  19. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 4:109–118
    [Google Scholar]
  20. Millonig G., De Rosa M., Gambacorta A., Bu’Lock J. D. 1975; Ultrastructure of an extremely thermophilic acidophilic microorganism. J Gen Microbiol 86:165–173
    [Google Scholar]
  21. Raha S., Merante F., Proteau G., Reed J. K. 1990; Simultaneous isolation of total cellular RNA and DNA from tissue culture cells using phenol and lithium chloride. Genet Anal Tech Appll173–177
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  23. Segerer A., Neuner A., Kristjansson J. K., Stetter K. O. 1986; Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabilizing archaebacteria. Int J Syst Bacteriol 36:559–564
    [Google Scholar]
  24. Silhavy T. J., Berman M.L., Enquist L. W. 1984 DNA extraction from bacterial cells. Experiments with Gene Fusions137–139 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Takayanagi S., Kawasaki H., Sugimori K., Yamada T., Sugai A., Ito T., Yamasato K., Shioda M. 1996; Sulfolobus hakonensis sp. nov., a novel species of acidothermophilic archaeon. Int J Syst Bacteriol 46:377–382
    [Google Scholar]
  26. Ziliig W., Stetter K. O., Wunderi S., Schulz W., Priess H., Sholz I. 1980; The Sulfolobus-Gaïdariella’ group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-4-1809
Loading
/content/journal/ijsem/10.1099/00207713-49-4-1809
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error