1887

Abstract

A yellow-pigmented, motile, Gram-stain-negative, moderately halophilic and strictly aerobic bacterium, designated BA42AL-1, was isolated from water of a saltern of Santa Pola, Alicante, Spain. Strain BA42AL-1 grew in media containing 5–20 % (w/v) salts (optimum 7.5 % salts). It grew between pH 6.0 and 9.0 (optimally at pH 7.5) and at 15–45 °C (optimally at 37 °C). Phylogenetic analysis based on the comparison of 16S rRNA gene sequences revealed that strain BA42AL-1 is a member of the genus . The closest relatives to this strain were YIM 95345 and CG12 with sequence similarities of 99.4 % and 97.0 %, respectively. DNA–DNA hybridization between the novel isolate and YIM 95345 revealed a relatedness of 54 %. The major fatty acids of strain BA42AL-1 were Cω6/Cω7, C cyclo ω and C and lower contents of C and C. The polar lipid pattern of strain BA42AL-1 consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylcholine, two glycolipids, a lipid and four unknown phospholipids. The G+C content of the genomic DNA of this strain was 65.0 mol%. Based on the DNA–DNA hybridization, phenotypic, chemotaxonomic and phylogenetic data presented in this study, strain BA42AL-1 is proposed as a novel species of the genus , for which the name sp. nov. is suggested. The type strain is BA42AL-1 ( = CCM 8472 = CECT 8326 = LMG 27614).

Funding
This study was supported by the:
  • Spanish Ministry of Science and Innovation (Award CGL2013-46941-P)
  • Junta de Andalucía (Award P10-CVI-6226)
  • FEDER
  • Plan Andaluz de Investigación
  • Spanish Ministry of Science and Innovation
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000106
2015-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/4/1354.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000106&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A. (editors) ( 2003 ). Cowan and Steel's Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [View Article]
    [Google Scholar]
  2. Bauer A. W., Kirby W. M. M., Sherris J. C., Turck M. ( 1966 ). Antibiotic susceptibility testing by a standardized single disk method. . Am J Clin Pathol 45, 493496.[PubMed]
    [Google Scholar]
  3. Clarke P. H. ( 1953 ). Hydrogen sulphide production by bacteria. . J Gen Microbiol 8, 397407. [View Article] [PubMed]
    [Google Scholar]
  4. Cowan S. T., Steel K. J. ( 1977 ). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  5. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [View Article]
    [Google Scholar]
  6. Fernández A. B., Ghai R., Martin-Cuadrado A. B., Sánchez-Porro C., Rodriguez-Valera F., Ventosa A. ( 2014 a). Prokaryotic taxonomic and metabolic diversity of an intermediate salinity hypersaline habitat assessed by metagenomics. . FEMS Microbiol Ecol 88, 623635. [View Article] [PubMed]
    [Google Scholar]
  7. Fernández A. B., Vera-Gargallo B., Sánchez-Porro C., Ghai R., Papke R. T., Rodriguez-Valera F., Ventosa A. ( 2014 b). Comparison of prokaryotic community structure from Mediterranean and Atlantic saltern concentrator ponds by a metagenomic approach. . Front Microbiol 5, 196. [View Article] [PubMed]
    [Google Scholar]
  8. Fitch W. M. ( 1971 ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20, 406416. [View Article]
    [Google Scholar]
  9. Ghai R., Pašić L., Fernández A. B., Martin-Cuadrado A. B., Mizuno C. M., McMahon K. D., Papke R. T., Stepanauskas R., Rodriguez-Brito B. et al. ( 2011 ). New abundant microbial groups in aquatic hypersaline environments. . Sci Rep 1, 135. [View Article] [PubMed]
    [Google Scholar]
  10. Johnson J. L. ( 1994 ). Similarity analysis of DNAs. . In Methods for General and Molecular Bacteriology, pp. 655681. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  11. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. et al. ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721.[PubMed] [CrossRef]
    [Google Scholar]
  12. León M. J., Fernández A. B., Ghai R., Sánchez-Porro C., Rodriguez-Valera F., Ventosa A. ( 2014 ). From metagenomics to pure culture: isolation and characterization of the moderately halophilic bacterium Spiribacter salinus gen. nov., sp. nov.. Appl Environ Microbiol 80, 38503857. [View Article] [PubMed]
    [Google Scholar]
  13. López-Pérez M., Ghai R., Leon M. J., Rodríguez-Olmos A., Copa-Patiño J. L., Soliveri J., Sanchez-Porro C., Ventosa A., Rodriguez-Valera F. ( 2013 ). Genomes of “Spiribacter”, a streamlined, successful halophilic bacterium. . BMC Genomics 14, 787. [View Article] [PubMed]
    [Google Scholar]
  14. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. ( 2004 ). arb: a software environment for sequence data. . Nucleic Acids Res 32, 13631371. [View Article] [PubMed]
    [Google Scholar]
  15. Marmur J. ( 1961 ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3, 208218. [View Article]
    [Google Scholar]
  16. Marmur J., Doty P. ( 1962 ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5, 109118. [View Article] [PubMed]
    [Google Scholar]
  17. Márquez M. C., Carrasco I. J., Xue Y., Ma Y., Cowan D. A., Jones B. E., Grant W. D., Ventosa A. ( 2007 ). Aquisalimonas asiatica gen. nov., sp. nov., a moderately halophilic bacterium isolated from an alkaline, saline lake in Inner Mongolia, China. . Int J Syst Evol Microbiol 57, 11371142. [View Article] [PubMed]
    [Google Scholar]
  18. Mellado E., Moore E. R. B., Nieto J. J., Ventosa A. ( 1995 ). Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui, Volcaniella eurihalina, and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina comb. nov.. Int J Syst Bacteriol 45, 712716. [View Article] [PubMed]
    [Google Scholar]
  19. Owen R. J., Hill L. R. ( 1979 ). The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. . In Identification Methods for Microbiologists, , 2nd edn., pp. 277296. Edited by Skinner F. A., Lovelock D. W. . London:: Academic Press;.
    [Google Scholar]
  20. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  21. Sasser M. . ( 1990 ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  22. Scorpio, R. (2000). Fundamentals of acids, bases, buffers and their application to biochemical systems. Kendall/Hunt Publishing Company.
  23. Stackebrandt E., Goebel B. M. ( 1994 ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44, 846849. [View Article]
    [Google Scholar]
  24. Subov N. N. . ( 1931 ). Oceanographical Tables. Moscow: USSR Oceanographic Institute Hydrometeorological Commission (in Russian). .
    [Google Scholar]
  25. Ventosa A., Quesada E., Rodríguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. ( 1982 ). Numerical taxonomy of moderately halophilic Gram-negative rods. . J Gen Microbiol 128, 19591968.
    [Google Scholar]
  26. Ventosa A., Gutiérrez M. C., Kamekura M., Zvyagintseva I. S., Oren A. ( 2004 ). Taxonomic study of Halorubrum distributum and proposal of Halorubrum terrestre sp. nov.. Int J Syst Evol Microbiol 54, 389392. [View Article] [PubMed]
    [Google Scholar]
  27. Ventosa A., Fernández A. B., León M. J., Sánchez-Porro C., Rodriguez-Valera F. ( 2014 ). The Santa Pola saltern as a model for studying the microbiota of hypersaline environments. . Extremophiles 18, 811824. [View Article] [PubMed]
    [Google Scholar]
  28. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987 ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37, 463464. [View Article]
    [Google Scholar]
  29. Zhang Y.-J., Jia M., Ma Y.-C., Lu K.-Y., Tian F., Klenk H.-P., Zhou Y., Tang S.-K. ( 2014 ). Aquisalimonas halophila sp. nov., a moderately halophilic bacterium isolated from a hypersaline mine. . Int J Syst Evol Microbiol 64, 22102216. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000106
Loading
/content/journal/ijsem/10.1099/ijs.0.000106
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error