1887

Abstract

A strictly anaerobic, mesophilic, iron-reducing bacterial strain, IRF19, was isolated from coal-contaminated soil in the Republic of Korea. IRF19 cells were straight, rod-shaped, Gram-staining-negative and motile by means of flagella. The optimum pH and temperature for their growth were determined to be pH 7.5–8.0 and 40 °C, while the optimum range was pH 6.5–10.0 and 20–45 °C, respectively. Strain IRF19 did not require NaCl for growth but it tolerated up to 2 % (w/v). Growth was observed with yeast extract, -glucose, -fructose, -ribose, -mannitol, -mannose, -serine, -alanine and -isoleucine. Fe(III), elemental sulfur, thiosulfate and sulfate were used as electron acceptors. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain IRF19 is affiliated to the family and is most closely related to Zn2 (93.5 % similarity), VNs68 (93.2 %) and B2-1 (92.3 %). The major cellular fatty acids of strain IRF19 were C, iso-C and C, and the profile was distinct from those of the closely related species. The major respiratory quinone of strain IRF19 was menaquinone MK-5 (V-H). The main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unknown phospholipid and two unknown polar lipids. The G+C content of the genomic DNA of strain IRF19 was determined to be 37.4 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic results, strain IRF19 is considered to represent a novel species of a novel genus of the family , for which we propose the name gen. nov., sp. nov., with the type strain IRF19 ( = KCTC 15396 = JCM 19988).

Funding
This study was supported by the:
  • National Research Foundation (NRF)
  • Ministry of Education, Science and Technology (MEST) (Award NRF-2013R1A2A2A05006754)
  • Korea Institute of Energy Technology Evaluation and Planning (KETEP) (Award 20132020000170)
  • National Institute of Biological Resources (NIBR)
  • Ministry of Environment (MOE) of the Republic of Korea (Award NIBR No. 2012-02-057)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000124
2015-05-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/5/1480.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000124&mimeType=html&fmt=ahah

References

  1. Benson H. J. ( 2002 ). Microbiological Applications. A laboratory Manual in General Microbiology. Boston:: McGraw-Hill Higher Education;.
    [Google Scholar]
  2. Childers S. E., Ciufo S., Lovley D. R. ( 2002 ). Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. . Nature 416, 767769. [View Article] [PubMed]
    [Google Scholar]
  3. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [View Article] [PubMed]
    [Google Scholar]
  4. Gonzalez J. M., Saiz-Jimenez C. ( 2002 ). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4, 770773. [View Article] [PubMed]
    [Google Scholar]
  5. Islam F. S., Gault A. G., Boothman C., Polya D. A., Charnock J. M., Chatterjee D., Lloyd J. R. ( 2004 ). Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. . Nature 430, 6871. [View Article] [PubMed]
    [Google Scholar]
  6. Kim K. K., Lee J.-S., Lee K. C., Oh H.-M., Kim S.-G. ( 2010 ). Pontibaca methylaminivorans gen. nov., sp. nov., a member of the family Rhodobacteraceae . . Int J Syst Evol Microbiol 60, 21702175. [View Article] [PubMed]
    [Google Scholar]
  7. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. et al. ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [View Article] [PubMed]
    [Google Scholar]
  8. Kim S. J., Choi Y. R., Park S. J., Kim J. G., Shin K. S., Roh D. H., Rhee S. K. ( 2013 ). Winogradskyella pulchriflava sp. nov., isolated from marine sediment. . Int J Syst Evol Microbiol 63, 30623068. [View Article] [PubMed]
    [Google Scholar]
  9. Kimura M. ( 1984 ). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  10. Komagata K., Suzuki K.-I. ( 1988 ). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19, 161207. [View Article]
    [Google Scholar]
  11. Lane D. J. ( 1991 ). 16S/23S rRNA sequencing. . Nucleic Acid Techniques in Bacterial Systematics, pp. 115175. Edited by Stackebrandt E., Goodfellow M. . Chichester:: Wiley;.
    [Google Scholar]
  12. Lovley D. R. ( 1995 ). Bioremediation of organic and metal contaminants with dissimilatory metal reduction. . J Ind Microbiol 14, 8593. [View Article] [PubMed]
    [Google Scholar]
  13. Lovley D. R., Phillips E. J. P. ( 1986 ). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. . Appl Environ Microbiol 51, 683689.[PubMed]
    [Google Scholar]
  14. Lovley D. R., Holmes D. E., Nevin K. P. ( 2004 ). Dissimilatory Fe(III) and Mn(IV) reduction. . Adv Microb Physiol 49, 219286. [View Article] [PubMed]
    [Google Scholar]
  15. MIDI ( 2001 ). Sherlock Microbial Identification System Operating Manual. Newark, DE:: MIDI, Inc;.
    [Google Scholar]
  16. Nei M., Kumar S., Takahashi K. ( 1998 ). The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. . Proc Natl Acad Sci U S A 95, 1239012397. [View Article] [PubMed]
    [Google Scholar]
  17. Nevin K. P., Holmes D. E., Woodard T. L., Hinlein E. S., Ostendorf D. W., Lovley D. R. ( 2005 ). Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates. . Int J Syst Evol Microbiol 55, 16671674. [View Article] [PubMed]
    [Google Scholar]
  18. Ryu E. ( 1938 ). On the Gram-differentiation of bacteria by the simplest method. . J Jpn Soc Vet Sci 17, 205207. [View Article]
    [Google Scholar]
  19. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  20. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  21. Schaeffer A. B., Fulton M. D. ( 1933 ). A simplified method of staining endospores. . Science 77, 194. [View Article] [PubMed]
    [Google Scholar]
  22. Shirling E. B., Gottlieb D. ( 1966 ). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol 16, 313340. [View Article]
    [Google Scholar]
  23. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. ( 2013 ). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30, 27252729. [View Article] [PubMed]
    [Google Scholar]
  24. Trueper H. G., Schlegel H. G. ( 1964 ). Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells of Chromatium okenii . . Antonie van Leeuwenhoek 30, 225238. [View Article] [PubMed]
    [Google Scholar]
  25. Tschech A., Pfennig N. ( 1984 ). Growth yield increase linked to caffeate reduction in Acetobacterium woodii . . Arch Microbiol 137, 163167. [View Article]
    [Google Scholar]
  26. Weber K. A., Achenbach L. A., Coates J. D. ( 2006 ). Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. . Nat Rev Microbiol 4, 752764. [View Article] [PubMed]
    [Google Scholar]
  27. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. ( 1991 ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173, 697703.[PubMed]
    [Google Scholar]
  28. Widdel F., Bak F. ( 1992 ). Gram-negative mesophilic sulfate-reducing bacteria. . In The Prokaryotes, , 2nd edn., vol. 4, pp. 33523378. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. . New York:: Springer;. [View Article]
    [Google Scholar]
  29. Zhang Y.-Z., Fang M.-X., Zhang W.-W., Li T.-T., Wu M., Zhu X.-F. ( 2013 ). Salimesophilobacter vulgaris gen. nov., sp. nov., an anaerobic bacterium isolated from paper-mill wastewater. . Int J Syst Evol Microbiol 63, 13171322. [View Article] [PubMed]
    [Google Scholar]
  30. Zoetendal E. G., Akkermans A. D. L., De Vos W. M. ( 1998 ). Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. . Appl Environ Microbiol 64, 38543859.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000124
Loading
/content/journal/ijsem/10.1099/ijs.0.000124
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error