1887

Abstract

A bacterial strain named BSTT44 was isolated in the course of a study of endophytic bacteria occurring in stems and roots of potato growing in a soil from Salamanca, Spain. The 16S rRNA gene sequence had 99.7 % identity with respect to that of its closest relative, E-3, and the next most closely related type strains were those of , with 99.6 % similarity, , with 99.2 % similarity, and , with 99.0 % similarity; these results indicate that BSTT44 should be classified within the genus . Analysis of the housekeeping genes , and confirmed its phylogenetic affiliation and showed identities lower than 92 % in all cases with respect to the above-mentioned closest relatives. Cells of the strain bore one polar–subpolar flagellum. The respiratory quinone was Q-9.The major fatty acids were C, Cω7 and summed feature 3 (Cω7 and/or Cω6). The strain was oxidase-, catalase- and urease-positive and the arginine dihydrolase system was present, but tests for nitrate reduction, β-galactosidase production and aesculin hydrolysis were negative. It could grow at 35 °C and at pH 5–9.The DNA G+C content was 60.2 mol%. DNA–DNA hybridization results showed less than 48 % relatedness with respect to the type strains of the four most closely related species. Therefore, the combined results of genotypic, phenotypic and chemotaxonomic analyses support the classification of strain BSTT44 into a novel species of the genus , for which the name sp. nov. is proposed. The type strain is BSTT44 ( = LMG 28456 = CECT 8691).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000230
2015-07-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/7/2110.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000230&mimeType=html&fmt=ahah

References

  1. Ait Tayeb L., Ageron E., Grimont F., Grimont P.A.D. ( 2005;). Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 156 763773 [View Article] [PubMed].
    [Google Scholar]
  2. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. ( 1990;). Basic local alignment search tool. J Mol Biol 215 403410 [View Article] [PubMed].
    [Google Scholar]
  3. Aravind R., Kumar A., Eapen S.J., Ramana K.V. ( 2009;). Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici . Lett Appl Microbiol 48 5864 [View Article] [PubMed].
    [Google Scholar]
  4. Berg G., Krechel A., Ditz M., Sikora R., Ulrich A., Hallmann J. ( 2005;). Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51 215229. [CrossRef]
    [Google Scholar]
  5. Carrión O., Miñana-Galbis D., Montes M.J., Mercadé E. ( 2011;). Pseudomonas deceptionensis sp. nov., a psychrotolerant bacterium from the Antarctic. Int J Syst Evol Microbiol 61 24012405 [View Article] [PubMed].
    [Google Scholar]
  6. Chun J., Goodfellow M. ( 1995;). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45 240245 [View Article] [PubMed].
    [Google Scholar]
  7. Clark L.L., Dajcs J.J., McLean C.H., Bartell J.G., Stroman D.W. ( 2006;). Pseudomonas otitidis sp. nov., isolated from patients with otic infections. Int J Syst Evol Microbiol 56 709714 [View Article] [PubMed].
    [Google Scholar]
  8. Collins M.D. ( 1985;). Analysis of isoprenoid quinones. Methods Microbiol 18 329366 [View Article].
    [Google Scholar]
  9. Collins M.D., Jones D. ( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45 316354 [PubMed].
    [Google Scholar]
  10. Diallo S., Crepin A., Barbey C., Orange N., Burini J.F., Latour X. ( 2011;). Mechanisms and recent advances in biological control mediated through the potato rhizosphere. FEMS Microbiol Ecol 75 351364. [CrossRef]
    [Google Scholar]
  11. Doetsch R.N. ( 1981;). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 2133. Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  12. Ezaki T., Hashimoto Y., Yabuuchi E. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39 224229 [View Article].
    [Google Scholar]
  13. Garbeva P., van Overbeek L.S., van Vuurde J.W.L., van Elsas J.D. ( 2001;). Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb Ecol 41 369383. [CrossRef]
    [Google Scholar]
  14. Hildebrand D.C., Palleroni N.J., Hendson M., Toth J., Johnson J.L. ( 1994;). Pseudomonas flavescens sp. nov., isolated from walnut blight cankers. Int J Syst Bacteriol 44 410415 [View Article] [PubMed].
    [Google Scholar]
  15. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62 716721 [View Article] [PubMed].
    [Google Scholar]
  16. Kimura M. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16 111120 [View Article] [PubMed].
    [Google Scholar]
  17. King E.O., Ward M.K., Raney D.E. ( 1954;). Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44 301307 [PubMed].
    [Google Scholar]
  18. Krechel A., Faupel A., Hallmann J., Ulrich A., Berg G. ( 2002;). Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48 772786 [View Article] [PubMed].
    [Google Scholar]
  19. Mandel M., Marmur J. ( 1968;). Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B 195206 [View Article].
    [Google Scholar]
  20. Mendes R., Garbeva P., Raaijmakers J.M. ( 2013;). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37 634663 [View Article] [PubMed].
    [Google Scholar]
  21. Molin G., Ternström A., Ursing J. ( 1986;). Pseudomonas lundensis, a new bacterial species isolated from meat. Int J Syst Bacteriol 36 339342 [View Article].
    [Google Scholar]
  22. Mulet M., Bennasar A., Lalucat J., García-Valdés E. ( 2009;). An rpoD-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples. Mol Cell Probes 23 140147 [View Article] [PubMed].
    [Google Scholar]
  23. Mulet M., Lalucat J., García-Valdés E. ( 2010;). DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 12 15131530 [PubMed].
    [Google Scholar]
  24. Mulet M., Gomila M., Lemaitre B., Lalucat J., García-Valdés E. ( 2012;). Taxonomic characterisation of Pseudomonas strain L48 and formal proposal of Pseudomonas entomophila sp. nov.. Syst Appl Microbiol 35 145149 [View Article] [PubMed].
    [Google Scholar]
  25. Palleroni N.J. ( 2005;). Genus I. Pseudomonas Migula 1894, 237AL (nom. cons., Opin. 5 of the Jud. Comm. 1952, 121). . In Bergey's Manual of Systematic Bacteriology , 2nd edn.., vol. 2B, pp. 323379. Edited by Boone D. R., Brenner D. J., Castenholz R. W., Garrity G. M., Krieg N. R., Staley J. T. New York: Springer;.
    [Google Scholar]
  26. Peix A., Berge O., Rivas R., Abril A., Velázquez E. ( 2005;). Pseudomonas argentinensis sp. nov., a novel yellow pigment-producing bacterial species, isolated from rhizospheric soil in Cordoba, Argentina. Int J Syst Evol Microbiol 55 11071112 [View Article] [PubMed].
    [Google Scholar]
  27. Ramírez-Bahena M.H., Cuesta M.J., Flores-Félix J.D., Mulas R., Rivas R., Castro-Pinto J., Brañas J., Mulas D., González-Andrés F., other authors. ( 2014;). Pseudomonas helmanticensis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 64 23382345 [View Article] [PubMed].
    [Google Scholar]
  28. Ramos E., Ramírez-Bahena M.H., Valverde A., Velázquez E., Zúñiga D., Velezmoro C., Peix A. ( 2013;). Pseudomonas punonensis sp. nov., isolated from straw. Int J Syst Evol Microbiol 63 18341839 [View Article] [PubMed].
    [Google Scholar]
  29. Reiter B., Pfeifer U., Schwab H., Sessitsch A. ( 2002;). Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp atroseptica. Appl Environ Microbiol 68 22612268. [CrossRef]
    [Google Scholar]
  30. Rivas R., García-Fraile P., Mateos P.F., Martínez-Molina E., Velázquez E. ( 2007;). Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera . Lett Appl Microbiol 44 181187 [View Article] [PubMed].
    [Google Scholar]
  31. Rogers J.S., Swofford D.L. ( 1998;). A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst Biol 47 7789 [View Article] [PubMed].
    [Google Scholar]
  32. Rosenblueth M., Martínez-Romero E. ( 2006;). Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19 827837 [View Article] [PubMed].
    [Google Scholar]
  33. Ryan R.P., Germaine K., Franks A., Ryan D.J., Dowling D.N. ( 2008;). Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278 19 [View Article] [PubMed].
    [Google Scholar]
  34. Saitou N., Nei M. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406425 [PubMed].
    [Google Scholar]
  35. Sasser M. ( 1990). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI, Inc;.
    [Google Scholar]
  36. Sessitsch A., Reiter B., Berg G. ( 2004;). Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50 239249. [CrossRef]
    [Google Scholar]
  37. Sturz A.V., Matheson B.G. ( 1996;). Populations of endophytic bacteria which influence host-resistance to Erwinia-induced bacterial soft rot in potato tubers. Plant Soil 184 265271. [CrossRef]
    [Google Scholar]
  38. Sturz A.V., Christie B.R., Matheson B.G. ( 1998;). Associations of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Can J Microbiol 44 162167. [CrossRef]
    [Google Scholar]
  39. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. ( 1983;). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54 3136 [View Article].
    [Google Scholar]
  40. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28 27312739 [View Article] [PubMed].
    [Google Scholar]
  41. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 48764882 [View Article] [PubMed].
    [Google Scholar]
  42. Toro M., Ramírez-Bahena M.H., Cuesta M.J., Velázquez E., Peix A. ( 2013;). Pseudomonas guariconensis sp. nov., isolated from rhizospheric soil. Int J Syst Evol Microbiol 63 44134420 [View Article] [PubMed].
    [Google Scholar]
  43. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37 463464 [View Article].
    [Google Scholar]
  44. Willems A., Doignon-Bourcier F., Goris J., Coopman R., de Lajudie P., De Vos P., Gillis M. ( 2001;). DNA–DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51 13151322 [PubMed].
    [Google Scholar]
  45. Xiao Y.P., Hui W., Wang Q., Roh S.W., Shi X.Q., Shi J.H., Quan Z.X. ( 2009;). Pseudomonas caeni sp. nov., a denitrifying bacterium isolated from the sludge of an anaerobic ammonium-oxidizing bioreactor. Int J Syst Evol Microbiol 59 25942598 [View Article] [PubMed].
    [Google Scholar]
  46. Yamamoto S., Harayama S. ( 1998;). Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB rpoD and 16S rRNA genes. Int J Syst Bacteriol 48 813819 [View Article] [PubMed].
    [Google Scholar]
  47. Yang J., Kloepper J.W., Ryu C.M. ( 2009;). Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14 14 [View Article] [PubMed].
    [Google Scholar]
  48. Yumoto I., Kusano T., Shingyo T., Nodasaka Y., Matsuyama H., Okuyama H. ( 2001;). Assignment of Pseudomonas sp. strain E-3 to Pseudomonas psychrophila sp. nov., a new facultatively psychrophilic bacterium. Extremophiles 5 343349 [View Article] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000230
Loading
/content/journal/ijsem/10.1099/ijs.0.000230
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error