1887

Abstract

Phenotypic and phylogenetic studies were performed on new isolates of a novel Gram-stain-positive, anaerobic, non-sporulating, rod-shaped bacterium isolated from a thermophilic biogas plant. The novel organisms were able to degrade crystalline cellulose. 16S rRNA gene comparative sequence analysis demonstrated that the isolates formed a hitherto unknown subline within the family . As a representative of the whole group of isolates, strain T3/55 was further characterized. The closest relative of T3/55 among the taxa with validly published names is , sharing 93.9 % 16S rRNA gene sequence similarity. Strain T3/55 was catalase-negative, indole-negative, and produced acetate, ethanol and propionic acid as major end products from cellulose metabolism. The major cellular fatty acids (>1 %) were 16 : 0 dimethyl acetal, 16 : 0 fatty acid methyl ester and 16 : 0 aldehyde. The DNA G+C content was 36.6 mol%. A novel genus and species, gen. nov., sp. nov., is proposed based on phylogenetic analysis and physiological properties of the novel isolate. Strain T3/55 ( = DSM 29228 = CECT 8801), represents the type strain of gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000264
2015-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/8/2365.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000264&mimeType=html&fmt=ahah

References

  1. Biddle A., Stewart L., Blanchard J., Leschine S. ( 2013;). Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae Ruminococcaceae in diverse gut communities. Diversity (Basel) 5 627640. [CrossRef]
    [Google Scholar]
  2. Collins M.D., Lawson P.A., Willems A., Cordoba J.J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J.A. ( 1994;). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44 812826. [CrossRef]
    [Google Scholar]
  3. DeLong E.F. ( 2009;). The microbial ocean from genomes to biomes. Nature 459 200206. [CrossRef]
    [Google Scholar]
  4. Euzéby J. ( 2010;). In List of New Names and New Combinations Previously Effectively, but not Validly, Published, Validation List no 132. Int J Syst Evol Microbiol 60 10091010. [CrossRef]
    [Google Scholar]
  5. Gosalbes M.J., Durbán A., Pignatelli M., Abellan J.J., Jiménez-Hernández N., Pérez-Cobas A.E., Latorre A., Moya A. ( 2011;). Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 6 e17447. [CrossRef]
    [Google Scholar]
  6. Hardman J.K., Stadtman T.C. ( 1960;). Metabolism of ω-acids. II. Fermentation of delta-aminovaleric acid by Clostridium aminovalericum n. sp. J Bacteriol 79 549552.
    [Google Scholar]
  7. Jeong H., Yi H., Sekiguchi Y., Muramatsu M., Kamagata Y., Chun J. ( 2004;). Clostridium jejuense sp. nov., isolated from soil. Int J Syst Evol Microbiol 54 14651468. [CrossRef]
    [Google Scholar]
  8. Jeong H., Lim Y.W., Yi H., Sekiguchi Y., Kamagata Y., Chun J. ( 2007;). Anaerosporobacter mobilis gen. nov., sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 57 17841787. [CrossRef]
    [Google Scholar]
  9. Johnson E.A., Madia A., Demain A.L. ( 1981;). Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum . Appl Environ Microbiol 41 10601062.
    [Google Scholar]
  10. Johnson M.J., Thatcher E., Cox M.E. ( 1995;). Techniques for controlling variability in gram staining of obligate anaerobes. J Clin Microbiol 33 755758.
    [Google Scholar]
  11. Kittelmann S., Seedorf H., Walters W.A., Clemente J.C., Knight R., Gordon J.I., Janssen P.H. ( 2013;). Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS One 8 e47879. [CrossRef]
    [Google Scholar]
  12. Koeck D.E., Zverlov V.V., Liebl W., Schwarz W.H. ( 2014;). Comparative genotyping of Clostridium thermocellum strains isolated from biogas plants: genetic markers and characterization of cellulolytic potential. Syst Appl Microbiol 37 311319. [CrossRef]
    [Google Scholar]
  13. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., other authors. ( 2004;). arb: a software environment for sequence data. Nucleic Acids Res 32 13631371. [CrossRef]
    [Google Scholar]
  14. Ludwig W., Schleifer K.-H., Whitman W.B. ( 2009;). Revised road map to the phylum Firmicutes . . In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol. 3, pp. 113. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B. New York: Springer;.
    [Google Scholar]
  15. Mechichi T., Labat M., Garcia J.L., Thomas P., Patel B.K. ( 1999;). Characterization of a new xylanolytic bacterium, Clostridium xylanovorans sp. nov. Syst Appl Microbiol 22 366371. [CrossRef]
    [Google Scholar]
  16. Meehan C.J., Beiko R.G. ( 2014;). A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol 6 703713. [CrossRef]
    [Google Scholar]
  17. Meyer F., Goesmann A., McHardy A.C., Bartels D., Bekel T., Clausen J., Kalinowski J., Linke B., Rupp O., other authors. ( 2003;). GenDB—an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 31 21872195. [CrossRef]
    [Google Scholar]
  18. Miller G.I. ( 1959;). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31 426428. [CrossRef]
    [Google Scholar]
  19. Munoz R., Yarza P., Ludwig W., Euzéby J., Amann R., Schleifer K.H., Glöckner F.O., Rosselló-Móra R. ( 2011;). Release LTPs104 of the All-Species Living Tree. Syst Appl Microbiol 34 169170. [CrossRef]
    [Google Scholar]
  20. Parte A.C. ( 2014;). LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42 (D1), D613D616. [CrossRef]
    [Google Scholar]
  21. Podosokorskaya O.A., Bonch-Osmolovskaya E.A., Beskorovaynyy A.V., Toshchakov S.V., Kolganova T.V., Kublanov I.V. ( 2014;). Mobilitalea sibirica gen. nov., sp. nov., a halotolerant polysaccharide-degrading bacterium. Int J Syst Evol Microbiol 64 26572661. [CrossRef]
    [Google Scholar]
  22. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. ( 2013;). The silva ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41 (D1), D590D596. [CrossRef]
    [Google Scholar]
  23. Rainey F.A. ( 2009;). Family V. Lachnospiraceae fam. nov. . In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol. 3 p. 921. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B. New York: Springer;.
    [Google Scholar]
  24. Reveneau C., Adams S.E., Cotta M.A., Morrison M. ( 2003;). Phenylacetic and phenylpropionic acids do not affect xylan degradation by Ruminococcus albus . Appl Environ Microbiol 69 69546958. [CrossRef]
    [Google Scholar]
  25. Sleat R., Mah R.A. ( 1985;). Clostridium populeti sp. nov., a cellulolytic species from a woody-biomass digester. Int J Syst Bacteriol 35 160163. [CrossRef]
    [Google Scholar]
  26. Stamatakis A. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22 26882690. [CrossRef]
    [Google Scholar]
  27. van Gylswyk N.O. ( 1980;). Fusobacterium polysaccharolyticum sp. nov., a Gram-negative rod from the rumen that produces butyrate and ferments cellulose and starch. J Gen Microbio 116 157163.
    [Google Scholar]
  28. van Gylswyk N.O., Van der Toorn J.J.T.K. ( 1985;). Eubacterium uniforme sp. nov. and Eubacterium xylanophilum sp. nov., fiber-digesting bacteria from the rumina of sheep fed corn stover. Int J Syst Bacteriol 35 323326. [CrossRef]
    [Google Scholar]
  29. Varel V.H., Tanner R.S., Woese C.R. ( 1995;). Clostridium herbivorans sp. nov., a cellulolytic anaerobe from the pig intestine. Int J Syst Bacteriol 45 490494. [CrossRef]
    [Google Scholar]
  30. Wanner G., Formanek H., Galli D., Wirth R. ( 1989;). Localization of aggregation substances of Enterococcus faecalis after induction by sex pheromones. An ultrastructural comparison using immuno labelling, transmission and high resolution scanning electron microscopic techniques. Arch Microbiol 151 491497. [CrossRef]
    [Google Scholar]
  31. Warnick T.A., Methé B.A., Leschine S.B. ( 2002;). Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol 52 11551160. [CrossRef]
    [Google Scholar]
  32. Westram R., Bader K., Prüsse E., Kumar Y., Meier H., Glöckner F.O., Ludwig W. ( 2011;). arb: a software environment for sequence data. . In Handbook of Molecular Microbial Ecology I: Metagenomics and Complementary Approaches, pp. 113. Edited by de Bruijn F. J. Hoboken, NJ: Wiley;.
    [Google Scholar]
  33. Wood T.M. ( 1988;). Preparation of crystalline, amorphous, and dyed cellulase substrates. Methods Enzymol 160 1925. [CrossRef]
    [Google Scholar]
  34. Yutin N., Galperin M.Y. ( 2013;). A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ Microbiol 15 26312641.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000264
Loading
/content/journal/ijsem/10.1099/ijs.0.000264
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error