1887

Abstract

The facultatively aerobic, non-hydrogenotrophic, iron (Fe)-corroding, nitrate-reducing sp. strain MIC1-1 was characterized for representation of a novel species of the genus . Strain MIC1-1 grew optimally at 35–37 °C, at pH 6.5 and with 2  % (w/v) NaCl. Strain MIC1-1 also grew fermentatively on some pentoses, hexoses, disaccharides and soluble starch. Succinic acid was the major end-product from -glucose fermentation. Strain MIC1-1 was differentiated from the type strain of by cell size, optimum growth temperature, range of temperature and NaCl for growth, and nitrate reduction. On the basis of phenotypic features and the phylogenetic position, a novel species of the genus is proposed for strain MIC1-1, to be named sp. nov. The type strain is MIC1-1 ( = JCM 18694 = NBRC 102688 = DSM 27267). Emended descriptions of the genus and are also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000343
2015-09-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/2865.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000343&mimeType=html&fmt=ahah

References

  1. De Windt W., Boon N., Siciliano S.D., Verstraete W. ( 2003;). Cell density related H2 consumption in relation to anoxic Fe(0) corrosion and precipitation of corrosion products by Shewanella oneidensis MR-1. Environ Microbiol 5 11921202 [View Article] [PubMed].
    [Google Scholar]
  2. Dinh H.T., Kuever J., Mußmann M., Hassel A.W., Stratmann M., Widdel F. ( 2004;). Iron corrosion by novel anaerobic microorganisms. Nature 427 829832 [View Article] [PubMed] .
    [Google Scholar]
  3. Enning D., Venzlaff H., Garrelfs J., Dinh H.T., Meyer V., Mayrhofer K., Hassel A.W., Stratmann M., Widdel F. ( 2012;). Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ Microbiol 14 17721787 [View Article] [PubMed] .
    [Google Scholar]
  4. Fan X., Guan X., Ma J., Ai H. ( 2009;). Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control. J Environ Sci (China) 21 10281035 [View Article] [PubMed] .
    [Google Scholar]
  5. Felsenstein J. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17 368376 [View Article] [PubMed] .
    [Google Scholar]
  6. Ginner J.L., Alvarez P.J.J., Smith S.L., Scherer M.M. ( 2004;). Nitrate and nitrite reduction by Fe0: influence of mass transport, temperature, and denitrifying microbes. Environ Eng Sci 21 219229 [View Article].
    [Google Scholar]
  7. Hasegawa M., Fujiwara M. ( 1993;). Relative efficiencies of the maximum likelihood, maximum parsimony, and neighbor-joining methods for estimating protein phylogeny. Mol Phylogenet Evol 2 15 [View Article] [PubMed] .
    [Google Scholar]
  8. Holmes D.E., Nevin K.P., Woodard T.L., Peacock A.D., Lovley D.R. ( 2007;). Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum Bacteroidetes, isolated from a marine-sediment fuel cell. Int J Syst Evol Microbiol 57 701707 [View Article] [PubMed] .
    [Google Scholar]
  9. Iino T., Mori K., Uchino Y., Nakagawa T., Harayama S., Suzuki K. ( 2010;). Ignavibacterium album gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring and proposal of Ignavibacteria classis nov., for a novel lineage at the periphery of green sulfur bacteria. Int J Syst Evol Microbiol 60 13761382 [View Article] [PubMed] .
    [Google Scholar]
  10. Iino T., Mori K., Itoh T., Kudo T., Suzuki K., Ohkuma M. ( 2014;). Description of Mariniphaga anaerophila gen. nov., sp. nov., a facultatively aerobic marine bacterium isolated from tidal flat sediment, reclassification of the Draconibacteriaceae as a later heterotypic synonym of the Prolixibacteraceae and description of the family Marinifilaceae fam. nov.. Int J Syst Evol Microbiol 64 36603667 [View Article] [PubMed] .
    [Google Scholar]
  11. Iino T., Ito K., Wakai S., Tsurumaru H., Ohkuma M., Harayama S. ( 2015;). Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1. Appl Environ Microbiol 81 18391846 [View Article] [PubMed] .
    [Google Scholar]
  12. Javaherdashti R. ( 2008). Microbiologically Influenced Corrosion: An Engineering Insight., New York: Springer;.
    [Google Scholar]
  13. Kielemoes J., De Boever P., Verstraete W. ( 2000;). Influence of denitrification on the corrosion of iron and stainless steel powder. Environ Sci Technol 34 663671 [View Article].
    [Google Scholar]
  14. Komagata K., Suzuki K. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19 161207. [CrossRef]
    [Google Scholar]
  15. Lechevalier M.P., De Bièvre C., Lechevalier H.A. ( 1977;). Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5 249260 [View Article].
    [Google Scholar]
  16. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Steppi S. ( 2004;). arb: a software environment for sequence data. Nucleic Acids Res 32 13631371 [View Article] [PubMed] .
    [Google Scholar]
  17. McBeth J.M., Little B.J., Ray R.I., Farrar K.M., Emerson D. ( 2011;). Neutrophilic iron-oxidizing zetaproteobacteria and mild steel corrosion in nearshore marine environments. Appl Environ Microbiol 77 14051412 [View Article] [PubMed] .
    [Google Scholar]
  18. Minnikin D.E., O'Donnell A.G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.H. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2 233241 [View Article].
    [Google Scholar]
  19. Saitou N., Nei M. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406425 [PubMed].
    [Google Scholar]
  20. Sasser M. ( 1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101., Newark, DE: MIDI Inc;.
    [Google Scholar]
  21. Stackebrandt E., Ebers J. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33 152155.
    [Google Scholar]
  22. Tamaoka J., Komagata K. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25 125128 [View Article].
    [Google Scholar]
  23. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 48764882 [View Article] [PubMed] .
    [Google Scholar]
  24. Till B.A., Weathers L.J., Alvarez P.J.J. ( 1998;). Fe(0)-supported autotrophic denitrification. Environ Sci Technol 32 634639 [View Article].
    [Google Scholar]
  25. Uchiyama T., Ito K., Mori K., Tsurumaru H., Harayama S. ( 2010;). Iron-corroding methanogen isolated from a crude-oil storage tank. Appl Environ Microbiol 76 17831788 [View Article] [PubMed] .
    [Google Scholar]
  26. Venzlaff H., Enning D., Srinivasan J., Mayrhofer K.J.J., Hassel A.W., Widdel F., Stratmann M. ( 2013;). Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros Sci 66 8896 [View Article].
    [Google Scholar]
  27. Xu D., Li Y., Song F., Gu T. ( 2013;). Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis . Corros Sci 77 385390 [View Article].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000343
Loading
/content/journal/ijsem/10.1099/ijs.0.000343
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error