1887

Abstract

A Gram-stain-negative, rod-shaped, orange bacterium (strain MDB1-A) was isolated from ice samples collected from Midui glacier in Tibet, south-west China. Cells were aerobic and psychrotolerant (growth occurred at 0–25 °C). Phylogenetic analysis based on 16S rRNA gene sequences showed that it was a member of the genus , with its closest relative being C16y (98.9 % similarity). Q-10 was the predominant ubiquinone. Cω6 and summed feature 8 (Cω6 and/or Cω7) were the major cellular fatty acids. The predominant polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and sphingoglycolipid. The polyamines detected were -homospermidine, spermidine and spermine. The G+C content of the genomic DNA was 63.6 %. Based on data from this polyphasic analysis, strain MDB1-A represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MDB1-A ( = CGMCC 1.10106 = NBRC 109639).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000362
2015-09-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/2955.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000362&mimeType=html&fmt=ahah

References

  1. Brosius J., Palmer M.L., Kennedy P.J., Noller H.F. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75 48014805 [View Article] [PubMed] .
    [Google Scholar]
  2. Busse H.-J., Bunka S., Hensel A., Lubitz W. ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47 698708 [View Article].
    [Google Scholar]
  3. Busse H.-J., Denner E.B.M., Buczolits S., Salkinoja-Salonen M., Bennasar A., Kämpfer P. ( 2003;). Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . Int J Syst Evol Microbiol 53 12531260 [View Article] [PubMed] .
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12 133142 [View Article] [PubMed] .
    [Google Scholar]
  5. Felsenstein J. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17 368376 [View Article] [PubMed] .
    [Google Scholar]
  6. Gordon R.E., Barnett D.A., Handerhan J.E., Pang C.H. ( 1974;). Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 24 5463 [View Article].
    [Google Scholar]
  7. Kawahara K., Matsuura M., Danbara H. ( 1990;). Chemical structure and biological activity of lipooligosaccharide isolated from Sphingomonas paucimobilis, a gram-negative bacterium lacking usual lipopolysaccharide. Jpn J Med Sci Biol 43 250 [PubMed].
    [Google Scholar]
  8. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y.S., Lee J.-H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62 716721 [View Article] [PubMed] .
    [Google Scholar]
  9. Kimura M. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16 111120 [View Article] [PubMed] .
    [Google Scholar]
  10. Komagata K., Suzuki K. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19 161207. [CrossRef]
    [Google Scholar]
  11. Lane D.J. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115175. Edited by Stackebrandt E., Goodfellow M. New York: Wiley;.
    [Google Scholar]
  12. Marmur J., Doty P. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5 109118 [View Article] [PubMed] .
    [Google Scholar]
  13. Saitou N., Nei M. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406425 [PubMed].
    [Google Scholar]
  14. Sasser M. ( 1990). Identification of bacteria by gas chromatography of cellular fatty acids., MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  15. Smibert R.M., Krieg N.R. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  16. Takeuchi M., Hamana K., Hiraishi A. ( 2001;). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51 14051417 [PubMed]. [CrossRef]
    [Google Scholar]
  17. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28 27312739 [View Article] [PubMed] .
    [Google Scholar]
  18. Thompson J.D., Higgins D.G., Gibson T.J. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 46734680 [View Article] [PubMed] .
    [Google Scholar]
  19. Tindall B.J., Sikorski J., Smibert R.M., Kreig N.R. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, pp. 330393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M. , 3rd edn.., Washington, DC: American Society for Microbiology; [View Article].
    [Google Scholar]
  20. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37 463464 [View Article].
    [Google Scholar]
  21. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. ( 1990;). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34 99119 [View Article] [PubMed] .
    [Google Scholar]
  22. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K. ( 2002;). Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola . Int J Syst Evol Microbiol 52 14851496 [View Article] [PubMed] .
    [Google Scholar]
  23. Zhang D.-C., Busse H.-J., Liu H.-C., Zhou Y.-G., Schinner F., Margesin R. ( 2011;). Sphingomonas glacialis sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 61 587591 [View Article] [PubMed] .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000362
Loading
/content/journal/ijsem/10.1099/ijs.0.000362
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error