1887

Abstract

Two strains of xylanase-producing bacteria, S3-4A and MX2-3, isolated from soils in Thailand, were characterized on the basis of their phenotypic and chemotaxonomic characteristics, DNA–DNA relatedness and 16S rRNA gene sequences. The novel strains were Gram-positive, facultatively anaerobic, spore-forming, rod-shaped bacteria. They contained -diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. The DNA G+C contents of strains S3-4A and MX2-3 were 52.7 and 52.9 mol%, respectively. The major isoprenoid quinone was MK-7. The dominant cellular fatty acids were anteiso-C and iso-C. Phylogenetic analyses using 16S rRNA gene sequences showed that both novel strains were affiliated to the genus . Strains S3-4A and MX2-3 were closely related to DSM 1355 with 97 % and 97.3 % gene sequence similarities, respectively. The DNA–DNA relatedness between strains S3-4A, MX2-3 and DSM 1355 was low (6.0–30.3 %). The novel strains could be clearly distinguished from DSM 1355 by physiological and biochemical characteristics. Therefore, these two strains represent novel species of the genus , for which the names sp. nov. (type strain S3-4A=KCTC 13043=PCU 275=TISTR 1827) and sp. nov. (type strain MX2-3=KCTC 13044=PCU 276=TISTR 1828) are proposed.

Keyword(s): NJ, neighbour-joining
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000406-0
2009-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/3/564.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000406-0&mimeType=html&fmt=ahah

References

  1. Ash, C., Priest, F. G. & Collins, M. D.(1994).Paenibacillus gen. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 51. Int J Syst Bacteriol 44, 852[CrossRef] [Google Scholar]
  2. Aÿ, J., Goetz, F., Borriss, R. & Heinemann, U.(1998). Structure and function of the Bacillus hybrid enzyme GluXyn-1: native-like jellyroll fold preserved after insertion of autonomous globular domain. Proc Natl Acad Sci U S A 95, 6613–6618.[CrossRef] [Google Scholar]
  3. Barrow, G. I. & Feltham, R. K. A.(1993).Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn, 331 pp. Cambridge: Cambridge University Press.
  4. Berge, O., Guinebretière, M. H., Achouak, W., Normand, P. & Heulin, T.(2002).Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52, 607–616. [Google Scholar]
  5. Chou, J. H., Chou, Y. J., Lin, K. Y., Sheu, S. Y., Sheu, D. S., Arun, A. B., Young, C. C. & Chen, W. M.(2007).Paenibacillus fonticola sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 57, 1346–1350.[CrossRef] [Google Scholar]
  6. Dasman, Kajiyama, S., Kawasaki, H., Yagi, M., Seki, T., Fukusaki, E. & Kobayashi, A.(2002).Paenibacillus glycanilyticus sp. nov., a novel species that degrades heteropolysaccharide produced by the cyanobacterium Nostoc commune. Int J Syst Evol Microbiol 52, 1669–1674.[CrossRef] [Google Scholar]
  7. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  8. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  9. Fitch, W. M.(1971). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef] [Google Scholar]
  10. Forbes, L.(1981). Rapid flagella stain. J Clin Microbiol 13, 807–809. [Google Scholar]
  11. Hespell, R. B.(1996). Fermentation of xylan, corn fiber, or sugars to acetoin and butanediol by Bacillus polymyxa strains. Curr Microbiol 32, 291–296.[CrossRef] [Google Scholar]
  12. Komagata, K. & Suzuki, K.(1987). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207. [Google Scholar]
  13. Lee, H.-J., Shin, D.-J., Cho, N. C., Kim, H.-O., Shin, S.-Y., Im, S.-Y., Lee, H. B., Chun, S.-B. & Bai, S.(2000). Cloning, expression and nucleotide sequences of two xylanase genes from Paenibacillus sp. Biotechnol Lett 22, 387–392.[CrossRef] [Google Scholar]
  14. Morales, P., Madarro, A., Flors, A., Sendra, J. M. & Pérez-González, J. A.(1995). Purification and characterization of a xylanase and an arabinofuranosidase from Bacillus polymyxa. Enzyme Microb Technol 17, 424–429.[CrossRef] [Google Scholar]
  15. Nielsen, P. & Sorensen, J.(1997). Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol Ecol 22, 183–192.[CrossRef] [Google Scholar]
  16. Rivas, R., Mateos, P. F., Martínez-Molina, E. & Velázquez, E.(2005a).Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. Int J Syst Evol Microbiol 55, 405–408.[CrossRef] [Google Scholar]
  17. Rivas, R., Mateos, P. F., Martínez-Molina, E. & Velázquez, E.(2005b).Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol 55, 743–746.[CrossRef] [Google Scholar]
  18. Roux, V. & Raoult, D.(2004).Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int J Syst Evol Microbiol 54, 1049–1054.[CrossRef] [Google Scholar]
  19. Ruijssenaars, H. J. & Hartmans, S.(2001). Plate screening methods for the detection of polysaccharase-producing microorganisms. Appl Microbiol Biotechnol 55, 143–149.[CrossRef] [Google Scholar]
  20. Saito, H. & Miura, K.(1963). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72, 619–629.[CrossRef] [Google Scholar]
  21. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  22. Sánchez, M. M., Fritze, D., Blanco, A., Spröer, C., Tindall, B. J., Schumann, P., Kroppenstedt, R. M., Diaz, P. & Pastor, F. I. J.(2005).Paenibacillus barcinonensis sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro River delta. Int J Syst Evol Microbiol 55, 935–939.[CrossRef] [Google Scholar]
  23. Sasser, M.(1990).Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. Newark, DE: MIDI.
  24. Scheldeman, P., Goossens, K., Rodriguez-Diaz, M., Pil, A., Goris, J., Herman, L., De Vos, P., Logan, N. A. & Heyndrickx, M.(2004).Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Evol Microbiol 54, 885–891.[CrossRef] [Google Scholar]
  25. Shida, O., Takagi, H., Kadowaki, K., Nakamura, L. K. & Komagata, K.(1997). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47, 289–298.[CrossRef] [Google Scholar]
  26. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  27. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega 4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef] [Google Scholar]
  28. Tanasupawat, S., Thawai, C., Yukphan, P., Moonmangmee, D., Itoh, T., Adachi, O. & Yamada, Y.(2004).Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 50, 159–167.[CrossRef] [Google Scholar]
  29. Teather, R. M. & Wood, P. J.(1982). Use of Congo red polysaccharide interaction in enumeration of cellulolytic bacteria from bovine rumen. Appl Environ Microbiol 43, 777–780. [Google Scholar]
  30. Ten, L. N., Baek, S.-H., Im, W.-T., Lee, M., Oh, H. W. & Lee, S.-T.(2006).Paenibacillus panacisoli sp. nov., a xylanolytic bacterium isolated from soil in a ginseng field in South Korea. Int J Syst Evol Microbiol 56, 2677–2681.[CrossRef] [Google Scholar]
  31. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  32. Uetanabaro, A. P., Wahrenburg, C., Hunger, W., Pukall, R., Spröer, C., Stackebrandt, E., de Canhos, V. P., Claus, D. & Fritze, D.(2003).Paenibacillus agarexedens sp. nov., nom. rev., and Paenibacillus agaridevorans sp. nov. Int J Syst Evol Microbiol 53, 1051–1057.[CrossRef] [Google Scholar]
  33. Van der Maarel, M. J. E. C., Veen, A. & Wijbenga, D. J.(2000).Paenibacillus granivorans sp. nov., a new Paenibacillus species which degrades native potato starch granules. Syst Appl Microbiol 23, 344–348.[CrossRef] [Google Scholar]
  34. Velázquez, E., de Miguel, T., Poza, M., Rivas, R., Rosselló-Mora, R. & Villa, T. G.(2004).Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces. Int J Syst Evol Microbiol 54, 59–64.[CrossRef] [Google Scholar]
  35. Yoon, J. H., Kang, S. J., Yeo, S. H. & Oh, T. K.(2005).Paenibacillus alkaliterrae sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol 55, 2339–2344.[CrossRef] [Google Scholar]
  36. Zamost, B. L., Nielsen, H. K. & Starnes, R. L.(1991). Thermostable enzymes for industrial applications. J Ind Microbiol 8, 71–82.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000406-0
Loading
/content/journal/ijsem/10.1099/ijs.0.000406-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 564 - 568

Xylanase activity around colonies of strains S3-4A and MX2-3 on XC medium flooded with Congo red.

Scanning electron micrographs of endospores of strains S3-4A and MX2-3 from 2 day cultures.

Neighbour-joining tree of 16S rRNA gene sequences showing the phylogenetic relationships between strains S3-4A , MX2-3 and all recognized species of the genus .

Maximum-parsimony tree of 16S rRNA gene sequences showing the phylogenetic relationships between strains S3-4A , MX2-3 and all recognized species of the genus .

[ Combined PDF File] 339 KB



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error