1887

Abstract

A Gram-negative ultramicrobacterium (designated strain UMB49) was isolated from a 120 000-year-old, 3042 m deep Greenland glacier ice core using a 0.2 μm filtration enrichment procedure. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this strain belonged to the genus of the family of the class . Strain UMB49 was most closely related to (99.6 % sequence similarity), (98.4 %), (97.6 %) and (97.9 %). Genomic DNA–DNA hybridization showed low levels of relatedness (below 57 %) to and . Cells of strain UMB49 were small thin rods with a mean volume of 0.043 μm and possessed 1 or 2 polar and/or 1–3 lateral very long flagella. The original colony pigmentation was brown-purple but after recultivation the colonies were translucent white to tan coloured. Strain UMB49 grew aerobically and under microaerophilic conditions. The strain produced catalase and oxidase, but did not reduce nitrate. Sole carbon sources included citrate, succinate, malate, lactate and alanine. The strain produced acid from -arabinose, -arabinose, -xylose, -xylose and -ribose. The DNA G+C content was 59.0 mol%. Based on differential characteristics of strain UMB49 and recognized species, it was concluded that strain UMB49 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is UMB49 (=ATCC BAA-1623=DSM 21140).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.001685-0
2009-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/6/1272.html?itemId=/content/journal/ijsem/10.1099/ijs.0.001685-0&mimeType=html&fmt=ahah

References

  1. Audic, S., Robert, C., Campagna, B., Parinello, H., Claverie, J.-M., Raoult, D. & Drancourt, M.(2007). Genome analysis of Minibacterium massiliensis highlights the convergent evolution of water-living bacteria. PLoS Genet 3, e138[CrossRef] [Google Scholar]
  2. Cavicchioli, R. & Ostrowski, M.(2003). Ultramicrobacteria. Encyclopedia of Life Sciences. Macmillan Publishers Ltd, Nature Publishing Group. http://www.els.net.
  3. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  4. Fernandes, C., Rainey, F. A., Nobre, M. F., Pinhal, I., Folhas, F. & da Costa, M. S.(2005).Herminiimonas fonticola gen. nov., sp. nov., a Betaproteobacterium isolated from a source of bottled mineral water. Syst Appl Microbiol 28, 596–603.[CrossRef] [Google Scholar]
  5. Iizuka, T., Yamanaka, S., Nishiyama, T. & Hiraishi, A.(1998). Isolation and phylogenetic analysis of aerobic copiotrophic ultramicrobacteria from urban soil. J Gen Appl Microbiol 44, 75–84.[CrossRef] [Google Scholar]
  6. Janssen, P. H., Schuhmann, A., Morschel, E. & Rainey, F. A.(1997). Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Appl Environ Microbiol 63, 1382–1388. [Google Scholar]
  7. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  8. Kämpfer, P., Busse, H.-J. & Falsen, E.(2006).Herminiimonas aquatilis sp. nov., a new species from drinking water. Syst Appl Microbiol 29, 287–291.[CrossRef] [Google Scholar]
  9. Lang, E., Swiderski, J., Stackebrandt, E., Schumann, P., Spröer, C. & Sahin, N.(2007).Herminiimonas saxobsidens sp. nov., isolated from a lichen-colonized rock. Int J Syst Evol Microbiol 57, 2618–2622.[CrossRef] [Google Scholar]
  10. Mandel, M. & Marmur, J.(1968). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B, 195–206. [Google Scholar]
  11. Männistö, M. K. & Häggblom, M. M.(2006). Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Syst Appl Microbiol 29, 229–243.[CrossRef] [Google Scholar]
  12. Miller, J.(1992).A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  13. Miteva, V. I. & Brenchley, J. E.(2005). Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Appl Environ Microbiol 71, 7806–7818.[CrossRef] [Google Scholar]
  14. Muller, D., Simeonova, D. D., Riegel, P., Mangenot, S., Koechler, S., Lièvremont, D., Bertin, P. N. & Lett, M.-C.(2006).Herminiimonas arsenicoxydans sp. nov., a metalloresistant bacterium. Int J Syst Evol Microbiol 56, 1765–1769.[CrossRef] [Google Scholar]
  15. Reasoner, D. J. & Geldreich, E. E.(1985). A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49, 1–7. [Google Scholar]
  16. Smibert, R. M. & Krieg, N. R.(1981). General characterization. In Manual of Methods for General Bacteriology, pp. 409–443. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. V. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: ASM.
  17. Sokol, P. A., Ohman, D. E. & Iglewski, B. H.(1979). A more sensitive plate assay for detection of protease production by Pseudomonas aeruginosa. J Clin Microbiol 9, 538–540. [Google Scholar]
  18. Swofford, D. L.(2002).paup*: Phylogenetic analysis using parsimony (and other methods), version 4. Sunderland, MA: Sinauer Associates.
  19. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.001685-0
Loading
/content/journal/ijsem/10.1099/ijs.0.001685-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error