1887

Abstract

A strictly anaerobic, thermophilic bacterium, designated strain Y170, was isolated from a microbial mat colonizing thermal waters of a run-off channel created by the free-flowing waters of a Great Artesian Basin (GAB) bore well (New Lorne bore; registered number 17263). Cells of strain Y170 were slightly curved rods (1.2–12×0.8–1.1 μm) and stained Gram-negative. The strain grew optimally in tryptone-yeast extract-glucose medium at 70 °C (temperature range for growth was 55–80 °C) and pH 7 (pH range for growth was 5–9). Strain Y170 grew poorly on yeast extract as a sole carbon source, but not on tryptone (0.2 %). Yeast extract could not be replaced by tryptone and was obligately required for growth on tryptone, peptone, glucose, fructose, galactose, cellobiose, mannose, sucrose, xylose, mannitol, formate, pyruvate, Casamino acids and threonine. No growth was observed on arabinose, lactose, maltose, raffinose, chitin, xylan, pectin, starch, acetate, benzoate, lactate, propionate, succinate, -inositol, ethanol, glycerol, amyl media, aspartate, leucine, glutamate, alanine, arginine, serine and glycine. End products detected from glucose fermentation were acetate, ethanol and presumably CO and H. Iron(III), manganese(IV), thiosulfate and elemental sulfur, but not sulfate, sulfite, nitrate or nitrite, were used as electron acceptors in the presence of 0.2 % yeast extract. Iron(III) in the form of amorphous Fe(III) oxhydroxide and Fe(III) citrate was also reduced in the presence of tryptone, peptone and Casamino acids, but not with chitin, xylan, pectin, formate, starch, pyruvate, acetate, benzoate, threonine, lactate, propionate, succinate, inositol, ethanol, glycerol, mannitol, aspartate, leucine, glutamate, alanine, arginine, serine or glycine. Strain Y170 was not able to utilize molecular hydrogen and/or carbon dioxide in the presence or absence of iron(III). Chloramphenicol, streptomycin, tetracycline, penicillin and ampicillin and NaCl concentrations greater than 2 % inhibited growth. The G+C content of the DNA was 48±1 mol% [ (=3); ]. 16S rRNA gene sequence analysis indicated that strain Y170 is a member of the family , class phylum and was most closely related to members of the genus (mean similarity of 93.6 %). On the basis of the 16S rRNA gene sequence comparisons and physiological characteristics, strain Y170 is considered to represent a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain is Y170 (=KCTC 5610=JCM 15106=DSM 21121).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.004200-0
2009-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/5/1100.html?itemId=/content/journal/ijsem/10.1099/ijs.0.004200-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef] [Google Scholar]
  2. Andrews, K. T. & Patel, B. K. C.(1996).Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46, 265–269.[CrossRef] [Google Scholar]
  3. Brock, T. D. & Freeze, H.(1969).Thermus aquaticus gen. nov., a nonsporulating extreme thermophile. J Bacteriol 98, 289–297. [Google Scholar]
  4. Chrisotomos, S., Patel, B. K. C., Dwivedi, P. P. & Denman, S. E.(1996).Calormator indicus sp. nov., a new thermophilic anaerobic bacterium isolated from the deep-seated nonvolcanically heated waters of an Indian artesian aquifer. Int J Syst Bacteriol 46, 497–501.[CrossRef] [Google Scholar]
  5. Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam, S. A., McGarrell, D. M., Garrity, G. M. & Tiedje, J. M.(2005). The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33, D294–D296. [Google Scholar]
  6. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  7. Habermahl, M. A.(1980). The Great Artesian Basin, Australia. BMR J Aust Geol Geophys 5, 9–38. [Google Scholar]
  8. Hall, T. A.(1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98. [Google Scholar]
  9. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–123. Edited by H. H. Munro. New York: Academic Press.
  10. Kanso, S. & Patel, B. K. C.(2003).Microvirga subterranea gen. nov., sp nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 53, 401–406.[CrossRef] [Google Scholar]
  11. Kanso, S., Greene, A. C. & Patel, B. K. C.(2002).Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 52, 869–874.[CrossRef] [Google Scholar]
  12. Kashefi, K., Holmes, D. E., Baross, J. A. & Lovley, D. R.(2003). Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the “Bag City” hydrothermal vent. Appl Environ Microbiol 69, 2985–2993.[CrossRef] [Google Scholar]
  13. Lee, Y. J., Wagner, I. D., Brice, M. E., Kevbrin, V. V., Mills, G. L., Romanek, C. S. & Wiegel, J.(2005).Thermosediminibacter oceani gen. nov., sp. nov. and Thermosediminibacter litoriperuensis sp. nov., new anaerobic thermophilic bacteria isolated from Peru Margin. Extremophiles 9, 375–383.[CrossRef] [Google Scholar]
  14. Love, C. A., Patel, B. K. C., Nichols, P. D. & Stackebrandt, E.(1993).Desulfotomaculum australicum, sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst Appl Microbiol 16, 244–251.[CrossRef] [Google Scholar]
  15. Lovley, D. R.(1997). Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol Rev 20, 305–313.[CrossRef] [Google Scholar]
  16. Lovley, D. R. & Phillips, E. J. P.(1986). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51, 683–689. [Google Scholar]
  17. Lovley, D. R. & Phillips, E. J. P.(1988). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54, 1472–1480. [Google Scholar]
  18. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  19. Marmur, J. & Doty, P.(1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef] [Google Scholar]
  20. Patel, B. K. C., Morgan, H. W. & Daniel, R. M.(1985a). A simple and efficient method for preparing and dispensing anaerobic media. Biotechnol Lett 7, 277–278.[CrossRef] [Google Scholar]
  21. Patel, B. K. C., Morgan, H. W. & Daniel, R. M.(1985b).Fervidobacterium nodosum gen. nov., sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141, 63–69.[CrossRef] [Google Scholar]
  22. Ramamoorthy, S., Sass, H., Langner, H., Schumann, P., Kroppenstedt, R. M., Spring, S., Overmann, J. & Rosenzweig, R. F.(2006).Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol 56, 2729–2736.[CrossRef] [Google Scholar]
  23. Redburn, A. C. & Patel, B. K. C.(1994).Desulfovibrio longreachii sp. nov., a sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. FEMS Microbiol Lett 115, 33–38.[CrossRef] [Google Scholar]
  24. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  25. Sorensen, J.(1982). Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl Environ Microbiol 43, 319–324. [Google Scholar]
  26. Spanevello, M. D.(2001).The phylogeny of prokaryotes associated with Australia's Great Artesian Basin. PhD thesis, School of Biomolecular and Physical Science, Griffith University, Brisbane, Australia.
  27. Spanevello, M. D., Yamamoto, H. & Patel, B. K. C.(2002).Thermaerobacter subterraneus sp. nov., a novel aerobic bacterium from the Great Artesian Basin of Australia, and emendation of the genus Thermaerobacter. Int J Syst Evol Microbiol 52, 795–800.[CrossRef] [Google Scholar]
  28. Spratt, H. G., Jr, Siekmann, E. C. & Hodson, R. E.(1994). Microbial manganese oxidation in saltmarsh surface sediments using a leuco crystal violet manganese oxide detection technique. Estuar Coast Shelf Sci 38, 91–112.[CrossRef] [Google Scholar]
  29. Van de Peer, Y., Jansen, J., De Rijk, P. & De Wachter, P.(1997). Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 25, 111–116.[CrossRef] [Google Scholar]
  30. Vargas, M., Kashefi, K., Blunt-Harris, E. L. & Lovley, D. R.(1998). Microbiological evidence for Fe(III) reduction on early Earth. Nature 395, 65–67.[CrossRef] [Google Scholar]
  31. Wolin, E. A., Wolin, M. J. & Wolfe, R. S.(1963). Formation of methane by bacterial extracts. J Biol Chem 238, 2882–2886. [Google Scholar]
  32. Zavarzina, D. G., Tourova, T. P., Kuznetsov, B. B., Bonch-Osomolovskaya, E. A. & Slobodkin, A. I.(2002).Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic, anaerobic, endospore-forming bacterium. Int J Syst Evol Microbiol 52, 1737–1743.[CrossRef] [Google Scholar]
  33. Zeikus, J. G., Hegge, P. W. & Anderson, M. A.(1979).Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 122, 41–48.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.004200-0
Loading
/content/journal/ijsem/10.1099/ijs.0.004200-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error