1887

Abstract

Two Gram-variable, aerobic, motile, rod-shaped, endospore-forming bacterial strains, M4-2 and M4-1, were isolated from soil samples collected from Oblast Magadan, Russian Far East, as micro-organisms antagonistic to the psychrophilic phytopathogenic fungus . Strains M4-2 and M4-1 were identified as members of the genus by phenotypic and phylogenetic analyses based on 16S rRNA gene sequences. The strains contained anteiso-C as the major fatty acid (63.0–64.7 %) and MK-7 as the major isoprenoid quinone. The DNA G+C contents were 42.8 and 41.7 mol%, respectively. 16S rRNA gene sequence analysis showed that strains M4-2 and M4-1 exhibited high similarities with DSM 2 (99.5 and 99.7 %, respectively) and LMG 22078 (99.4 and 99.5 %, respectively). There were no clear differences in the phenotypic characteristics and chemotaxonomic and phylogenetic data between the novel isolates and DSM 2. DNA–DNA hybridization experiments between strain M4-2 and DSM 2 and LMG 22078 revealed reassociation values of 56 and 49 %, respectively. Multilocus sequence analysis confirmed the differences between the new isolates and reference strains that were observed with the DNA–DNA hybridization studies. On the basis of the results described above, it is proposed that the isolates represent a novel subspecies of , subsp. subsp. nov. The type strain is M4-2 (=JCM 14954=NCIMB 14397).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.006304-0
2009-08-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/8/2074.html?itemId=/content/journal/ijsem/10.1099/ijs.0.006304-0&mimeType=html&fmt=ahah

References

  1. Ash, C., Priest, F. G. & Collins, M. D.(1993). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64, 253–260. [Google Scholar]
  2. Barrow, G. I. & Feltham, R. K. A.(1993).Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press.
  3. Christner, B. C., Monsley-Thompson, E., Thompson, L. G. & Reeve, J. N.(2001). Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3, 570–577.[CrossRef] [Google Scholar]
  4. Dahllöf, I., Baillie, H. & Kjelleberg, S.(2000).rpoB-based microbial community analysis avoid limitations inherent in 16S rDNA gene intraspecies heterogeneity. Appl Environ Microbiol 66, 3376–3380.[CrossRef] [Google Scholar]
  5. Elo, S., Suominen, I., Kämpfer, P., Juhanoja, J., Salkinoja-Salonen, M. & Haahtela, K.(2001).Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. Int J Syst Evol Microbiol 51, 535–545. [Google Scholar]
  6. Ezaki, T., Hashimono, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  7. Hoshino, T.(2006). Ecophysiology of snow mold fungi. Curr Topic Plant Biol 6, 27–35. [Google Scholar]
  8. Hsiang, T., Wu, C. & Cook, S.(1999). Residual efficacy of Typhula phacorrhiza as a biocontrol agent of grey snow mold on creeping bentgrass. Can J Plant Pathol 21, 382–387.[CrossRef] [Google Scholar]
  9. Jordan, D. C., McNicol, P. J. & Marshall, M. R.(1978). Biological nitrogen fixation in the terrestrial environment of a high arctic ecosystem (Truelove Lowland, Devon Island, N.W.T.). Can J Microbiol 24, 643–649.[CrossRef] [Google Scholar]
  10. Katsura, E., Ogawa, H., Kojima, H., Yano, S. & Kaneshima, H.(1994). Runoff of fungicides used for prevention of snow molds in golf course. J Environ Chem 4, 831–840.[CrossRef] [Google Scholar]
  11. Kim, D. S., Cook, R. J. & Weller, D. M.(1997).Bacillus sp. L324–94 for biological control of three diseases of wheat growth with reduced tillage. Phytopathology 87, 551–558.[CrossRef] [Google Scholar]
  12. Kimura, M.(1983).The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.
  13. Logan, N. A., De Clerck, E., Lebbe, L., Verhelst, A., Goris, J., Forsyth, G., Rodríguez-Díaz, M., Heyndrickx, M. & De Vos, P.(2004).Paenibacillus cineris sp. nov. and Paenibacillus cookii sp. nov., from Antarctic volcanic soils and a gelatin-processing plant. Int J Syst Evol Microbiol 54, 1071–1076.[CrossRef] [Google Scholar]
  14. Marshall, B. J. & Ohye, D. F.(1966).Bacillus macquariensis n. sp., a psychrophilic bacterium from Antarctic soil. J Gen Microbiol 44, 41–46.[CrossRef] [Google Scholar]
  15. Matsuyama, H., Hirabayashi, T., Kawahara, H., Minami, H., Hoshino, T. & Yumoto, I.(2006).Glaciecola chathamensis sp. nov., a novel marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol 56, 2883–2886.[CrossRef] [Google Scholar]
  16. Montes, M. J., Mercadé, E., Bozal, N. & Guinea, J.(2004).Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 54, 1521–1526.[CrossRef] [Google Scholar]
  17. Oshiman, K.(2000). Sodium alginate as an adjuvant of an antagonistic bacterium, Pseudomonas fluorescens strain A11RN, to enhance biocontrol of turfgrass snow mold caused by Typhula ishikariensis. J Gen Plant Pathol 66, 258–263.[CrossRef] [Google Scholar]
  18. Pepi, M., Agnorelli, C. & Bargagli, R.(2005). Iron demand by thermophilic and mesophilic bacteria isolated from antarctic geothermal soil. Biometals 18, 529–536.[CrossRef] [Google Scholar]
  19. Rodríguez-Díaz, M., Lebbe, L., Rodelas, B., Heyman, J., De Vos, P. & Logan, N. A.(2005).Paenibacillus wynnii sp. nov., a novel species harbouring the nifH gene, isolated from Alexander Island, Antarctica. Int J Syst Evol Microbiol 55, 2093–2099.[CrossRef] [Google Scholar]
  20. Rosselló-Mora, R. & Amman, R.(2001). The species concept for prokaryotes. FEMS Microbiol Rev 25, 39–67.[CrossRef] [Google Scholar]
  21. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  22. Shida, O., Takagi, H., Kadowaki, K., Nakamura, L. K. & Komagata, K.(1997). Transfer of Bacillus aiginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47, 289–298.[CrossRef] [Google Scholar]
  23. Stackebrandt, E. & Goebel, B. M.(1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef] [Google Scholar]
  24. Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P. A., Kämpfer, P., Maiden, M. C., Nesme, X., Rosselló-Mora, R., Swings, J. & other authors(2002). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52, 1043–1047.[CrossRef] [Google Scholar]
  25. Staneck, J. L. & Roberts, G. D.(1974). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28, 226–231. [Google Scholar]
  26. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  27. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  28. Xu, D. & Côté, J.-C.(2003). Phylogenetic relationship between Bacillus species and related genera inferred from comparison of 3′ end 16S rDNA and 5′ end 16S–23S ITS nucleotide sequences. Int J Syst Evol Microbiol 53, 695–704.[CrossRef] [Google Scholar]
  29. Yamamoto, S. & Harayama, S.(1995). PCR amplification and direct sequencing of gyrB with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61, 1104–1109. [Google Scholar]
  30. Yumoto, I., Yamazaki, K., Sawabe, T., Nakano, K., Kawasaki, K., Ezura, Y. & Shinano, H.(1998).Bacillus horti sp. nov., a new Gram-negative alkaliphilic bacillus. Int J Syst Bacteriol 48, 565–571.[CrossRef] [Google Scholar]
  31. Yumoto, I., Yamazaki, K., Hishinuma, M., Nodasaka, Y., Suemori, A., Nakajima, K., Inoue, N. & Kawasaki, K.(2001).Pseudomonas alkaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51, 349–355. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.006304-0
Loading
/content/journal/ijsem/10.1099/ijs.0.006304-0
Loading

Data & Media loading...

Supplements

vol. , part 8, pp. 2074 - 2079

DNA–DNA relatedness among strains examined in this study.

Macromorphology of co-cultured with subsp. subsp. nov. M4-2 (a) and alone (b) after incubation at 10°C for 30 days.

[ Combined PDF] 388 KB

 

 



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error