1887

Abstract

Peatlands are important sources of CH emissions to the atmosphere and molecular surveys have identified a diverse, but mainly uncultured, euryarchaeal community in them. Characterization of a strain, E1-9c, associated with uncultured group E1, from a minerotrophic fen is reported. Cells were regular cocci, usually found in pairs, that stained Gram-positive and were resistant to lysis by 0.1 % SDS. Multiple flagella were observed, but motility was not observed in wet mounts. Optimal growth was obtained at moderate temperatures (28–30 °C) and slightly acidic pH (5.5). Total Na and NaCl were only tolerated at concentrations less than 100 mM and 0.5 %, respectively, and NaS concentrations above 0.1 mM were inhibitory. H/CO and formate were the only methanogenic substrates used by E1-9c; formate concentrations above 50 mM were inhibitory for growth. Vitamins, coenzyme M and acetate (4 mM) were required for growth and the doubling time was about 19 h. Phylogenetic analysis of the 16S rRNA gene and inferred McrA amino acid sequences showed that E1-9c represented an independent lineage within the order . Physiological and phylogenetic comparisons with different members of the order supported classification of E1-9c in a new genus in the . The name gen. nov., sp. nov. is proposed; strain E1-9c (=ATCC BAA-1565 =DSM 19958) is the type strain of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.006890-0
2009-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/5/928.html?itemId=/content/journal/ijsem/10.1099/ijs.0.006890-0&mimeType=html&fmt=ahah

References

  1. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S.(1979). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296. [Google Scholar]
  2. Basiliko, N., Yavitt, J. B., Dees, P. M. & Merkel, S.(2003). Methane biogeochemistry and methanogen communities in two northern peatland ecosystems, New York State. Geomicrobiol J 20, 563–577.[CrossRef] [Google Scholar]
  3. Belay, N., Sparling, R. & Daniels, L.(1986). Relationship of formate to growth and methanogenesis by Methanococcus thermolithotrophicus. Appl Environ Microbiol 52, 1080–1085. [Google Scholar]
  4. Boone, D. R. & Whitman, W. B.(1988). Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int J Syst Bacteriol 38, 212–219.[CrossRef] [Google Scholar]
  5. Boone, D. R., Whitman, W. B. & Rouvière, P.(1993). Diversity and taxonomy of methanogens. In Methanogenesis: Ecology, Physiology, Biochemistry and Genetics, pp. 35–80. Edited by J. G. Ferry. New York: Chapman & Hall.
  6. Boone, D. R., Whitman, W. B. & Koga, Y.(2001). Order II. Methanomicrobiales Balch and Wolfe 1981, 216VP. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 246–247. Edited by G. M. Garrity, D. R. Boone & R. W. Castenholz. New York: Springer.
  7. Bott, M. H., Eikmanns, B. & Thauer, R. K.(1985). Defective formation and/or utilization of carbon monoxide in H2/CO2 fermenting methanogens dependent on acetate as carbon source. Arch Microbiol 143, 266–269.[CrossRef] [Google Scholar]
  8. Bräuer, S. L., Cadillo-Quiroz, H., Yashiro, E., Yavitt, J. B. & Zinder, S. H.(2006a). Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442, 192–194.[CrossRef] [Google Scholar]
  9. Bräuer, S. L., Yashiro, E., Ueno, N. G., Yavitt, J. B. & Zinder, S. H.(2006b). Characterization of acid-tolerant H2/CO2-utilizing methanogenic enrichment cultures from an acidic peat bog in New York State. FEMS Microbiol Ecol 57, 206–216.[CrossRef] [Google Scholar]
  10. Cadillo-Quiroz, H., Bräuer, S., Yashiro, E., Sun, C., Yavitt, J. & Zinder, S.(2006). Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA. Environ Microbiol 8, 1428–1440.[CrossRef] [Google Scholar]
  11. Cadillo-Quiroz, H., Yashiro, E., Yavitt, J. B. & Zinder, S. H.(2008). Characterization of the archaeal community in a minerotrophic fen and terminal restriction fragment length polymorphism-directed isolation of a novel hydrogenotrophic methanogen. Appl Environ Microbiol 74, 2059–2068.[CrossRef] [Google Scholar]
  12. Cicerone, R. J. & Oremland, R. S.(1988). Biogeochemical aspects of atmospheric methane. Global Biogeochem Cycles 2, 299–327.[CrossRef] [Google Scholar]
  13. DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P. & Andersen, G. L.(2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72, 5069–5072.[CrossRef] [Google Scholar]
  14. Dettling, M. D., Yavitt, J. B., Cadillo-Quiroz, H., Sun, C. & Zinder, S. H.(2007). Soil-methanogen interactions in two peatlands (bog, fen) in central New York State. Geomicrobiol J 24, 247–259.[CrossRef] [Google Scholar]
  15. Dubach, A. C. & Bachofen, R.(1985). Methanogens: a short taxonomic overview. Experientia 41, 441–446.[CrossRef] [Google Scholar]
  16. Ferry, J. G., Smith, P. H. & Wolfe, R. S.(1974).Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungatii sp. nov. Int J Syst Bacteriol 24, 465–469.[CrossRef] [Google Scholar]
  17. Firtel, M., Southam, G., Mok, T., Harris, R. & Beveridge, T. J.(1995). Electron microscopy techniques for the Archaea. In Archaea: a Laboratory Manual, vol. 2, Methanogens, pp. 123–140. Edited by K. R. Sowers & H. J. Schreier. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  18. Fuchs, G., Stupperich, E. & Thauer, R. K.(1978). Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. Arch Microbiol 117, 61–66.[CrossRef] [Google Scholar]
  19. Galand, P. E., Fritze, H. & Yrjälä, K.(2003). Microsite-dependent changes in methanogenic populations in a boreal oligotrophic fen. Environ Microbiol 5, 1133–1143.[CrossRef] [Google Scholar]
  20. Garcia, J. L.(1990). Taxonomy and ecology of methanogens. FEMS Microbiol Rev 87, 297–308.[CrossRef] [Google Scholar]
  21. Garcia, J. L., Patel, B. K. C. & Ollivier, B.(2000). Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6, 205–226.[CrossRef] [Google Scholar]
  22. Gonzalez, J. M. & Saiz-Jimenez, C.(2002). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4, 770–773.[CrossRef] [Google Scholar]
  23. Gore, A. J. P.(1983).Ecosystems of the World 4B. Mires: Swamp, Bog, Fen and Moor. Regional Studies. Amsterdam: Elsevier Scientific.
  24. Gorham, E.(1991). Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1, 182–195.[CrossRef] [Google Scholar]
  25. Hales, B. A., Edwards, C., Ritchie, D. A., Hall, G., Pickup, R. W. & Saunders, J. R.(1996). Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol 62, 668–675. [Google Scholar]
  26. Imachi, H., Sakai, S., Sekiguchi, Y., Hanada, S., Kamagata, Y., Ohashi, A. & Harada, H.(2008).Methanolinea tarda gen. nov., sp. nov., a methane-producing archaeon isolated from a methanogenic digester sludge. Int J Syst Evol Microbiol 58, 294–301.[CrossRef] [Google Scholar]
  27. Jarrell, K. F. & Kalmokoff, M. L.(1988). Nutritional requirements of the methanogenic archaebacteria. Can J Microbiol 34, 557–576.[CrossRef] [Google Scholar]
  28. Kotsyurbenko, O. R., Chin, K. J., Glagolev, M. V., Stubner, S., Simankova, M. V., Nozhevnikova, A. N. & Conrad, R.(2004). Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Environ Microbiol 6, 1159–1173.[CrossRef] [Google Scholar]
  29. Lai, M. C. & Chen, S. C.(2001).Methanofollis aquaemaris sp. nov., a methanogen isolated from an aquaculture fish pond. Int J Syst Evol Microbiol 51, 1873–1880.[CrossRef] [Google Scholar]
  30. Lai, M. C., Chen, S. C., Shu, C. M., Chiou, M. S., Wang, C. C., Chuang, M. J., Hong, T. Y., Liu, C. C., Lai, L. J. & Hua, J. J.(2002).Methanocalculus taiwanensis sp. nov., isolated from an estuarine environment. Int J Syst Evol Microbiol 52, 1799–1806.[CrossRef] [Google Scholar]
  31. Lai, M. C., Lin, C. C., Yu, P. H., Huang, Y. F. & Chen, S. C.(2004).Methanocalculus chunghsingensis sp. nov., isolated from an estuary and a marine fishpond in Taiwan. Int J Syst Evol Microbiol 54, 183–189.[CrossRef] [Google Scholar]
  32. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  33. Mori, K., Yamamoto, H., Kamagata, Y., Hatsu, M. & Takamizawa, K.(2000).Methanocalculus pumilus sp. nov., a heavy-metal-tolerant methanogen isolated from a waste-disposal site. Int J Syst Evol Microbiol 50, 1723–1729. [Google Scholar]
  34. Ni, S. S. & Boone, D. R.(1991). Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. Int J Syst Bacteriol 41, 410–416.[CrossRef] [Google Scholar]
  35. Ollivier, B. M., Mah, R. A., Garcia, J. L. & Robinson, R.(1985). Isolation and characterization of Methanogenium aggregans sp. nov. Int J Syst Bacteriol 35, 127–130.[CrossRef] [Google Scholar]
  36. Ollivier, B., Cayol, J. L., Patel, B. K. C., Magot, M., Fardeau, M. L. & Garcia, J. L.(1997).Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil-producing well. FEMS Microbiol Lett 147, 51–56.[CrossRef] [Google Scholar]
  37. Ollivier, B., Fardeau, M. L., Cayol, J. L., Magot, M., Patel, B. K., Prensier, G. & Garcia, J. L.(1998).Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int J Syst Bacteriol 48, 821–828.[CrossRef] [Google Scholar]
  38. Patel, G. B., Sprott, G. D. & Fein, J. E.(1990). Isolation and characterization of Methanobacterium espanolae sp. nov., a mesophilic, moderately acidiphilic methanogen. Int J Syst Bacteriol 40, 12–18.[CrossRef] [Google Scholar]
  39. Rajagopal, B. S. & Daniels, L.(1986). Investigation of mercaptans, organic sulfides, and inorganic sulfur compounds as sulfur sources for the growth of methanogenic bacteria. Curr Microbiol 14, 137–144.[CrossRef] [Google Scholar]
  40. Robinson, R. W.(1986). Life cycles in the methanogenic archaebacterium Methanosarcina mazei. Appl Environ Microbiol 52, 17–27. [Google Scholar]
  41. Ronquist, F. & Huelsenbeck, J. P.(2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.[CrossRef] [Google Scholar]
  42. Sakai, S., Imachi, H., Sekiguchi, Y., Ohashi, A., Harada, H. & Kamagata, Y.(2007). Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Appl Environ Microbiol 73, 4326–4331.[CrossRef] [Google Scholar]
  43. Sowers, K. R. & Noll, K. M.(1995). Techniques for anaerobic growth. In Archaea: a Laboratory Manual, vol. 2, Methanogens, pp. 15–48. Edited by K. R. Sowers & H. J. Schreier. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  44. Sparling, R. & Daniels, L.(1990). Regulation of formate dehydrogenase activity in Methanococcus thermolithotrophicus. J Bacteriol 172, 1464–1469. [Google Scholar]
  45. Sprott, G. D. & Beveridge, T. J.(1994). Microscopy. In Methanogenesis: Ecology, Physiology, Biochemistry and Genetics, pp. 81–172. Edited by F. G. Ferry. New York: Chapman & Hall.
  46. Sprott, G. D. & Jarrell, K. F.(1981). K+, Na+, and Mg2+ content and permeability of Methanospirillum hungatei and Methanobacterium thermoautotrophicum. Can J Microbiol 27, 444–451.[CrossRef] [Google Scholar]
  47. Wackett, L. P., Hartwieg, E. A., King, J. A., Orme-Johnson, W. H. & Walsh, C. T.(1987). Electron microscopy of nickel-containing methanogenic enzymes: methyl reductase and F420-reducing hydrogenase. J Bacteriol 169, 718–727. [Google Scholar]
  48. Zellner, G., Alten, C., Stackebrandt, E., Conway de Macario, E. & Winter, J.(1987). Isolation and characterization of Methanocorpusculum parvum, gen. nov., spec. nov., a new tungsten requiring, coccoid methanogen. Arch Microbiol 147, 13–20.[CrossRef] [Google Scholar]
  49. Zellner, G., Messner, P., Winter, J. & Stackebrandt, E.(1998).Methanoculleus palmolei sp. nov., an irregularly coccoid methanogen from an anaerobic digester treating wastewater of a palm oil plant in North-Sumatra, Indonesia. Int J Syst Bacteriol 48, 1111–1117.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.006890-0
Loading
/content/journal/ijsem/10.1099/ijs.0.006890-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 928 - 935

Effect of sodium on growth of strain E1-9c .

Formate utilization tests with strain E1-9c .

[PDF file of Supplementary Figs S1 and S2](258 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error