1887

Abstract

Two aerobic bacterial strains, YIM B024 and YIM B025, were isolated from a salt mine in Yunnan, south-west China. Both strains showed almost the same physiological properties. Cells were Gram-negative, non-motile, non-spore-forming rods. The novel strains grew at 15–37 °C, pH 6.5–9.0 and 0.25–20 % (w/v) NaCl; optimum growth was observed at 28–30 °C, pH 7.0–8.5 and 1.5–10 % NaCl. Oxidase, catalase and nitrate-reducing activities were detected. The two strains were closely related to each other with a 16S rRNA gene sequence similarity of 100 %. DNA–DNA hybridization experiments revealed high relatedness values (90±0.4 %) between strains YIM B024 and YIM B025, which suggested that these two new strains constituted a single species. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two isolates formed a loose cluster with members of the genus in the clade, but were clearly separated from this genus. The levels of 16S rRNA gene sequence similarity between the two isolates and members of the genus ranged from 92.4 to 93.9 %. The major polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and four unknown phospholipids. The major cellular fatty acids were C 7, C, C 9, 11-methyl C 7 and C cyclo 8. The sole respiratory quinone was Q-10 and the genomic DNA GC content was 63.0–64.1 mol%. The distinct phylogenetic position and a combination of phenotypic and chemotaxonomic characteristics supported the proposal of the new isolates as representing a novel species in a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is YIM B024 (=KCTC 22349=CCTCC AA 208033).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.006965-0
2009-07-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/7/1561.html?itemId=/content/journal/ijsem/10.1099/ijs.0.006965-0&mimeType=html&fmt=ahah

References

  1. Allgaier, M., Uphoff, H., Feelske, A. & Wagner-Dőbler, I.(2003). Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 69, 5051–5059.[CrossRef] [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J.(1990). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef] [Google Scholar]
  3. Arahal, D. R., Macián, M. C., Garay, E. & Pujalte, M. J.(2005).Thalassobius mediterraneus gen. nov., sp. nov., and reclassification of Ruegeria gelatinovorans as Thalassobius gelatinovorus comb. nov. Int J Syst Evol Microbiol 55, 2371–2376.[CrossRef] [Google Scholar]
  4. Buchan, A., González, J. M. & Moran, M. A.(2005). Overview of the marine Roseobacter lineage. Appl Environ Microbiol 71, 5665–5677.[CrossRef] [Google Scholar]
  5. Cho, J. C. & Giovannoni, S. J.(2004).Oceanicola granulosus gen. nov., sp. nov. and Oceanicola batsensis sp. nov., poly-β-hydroxybutyrate-producing marine bacteria in the order ‘Rhodobacterales’. Int J Syst Evol Microbiol 54, 1129–1136.[CrossRef] [Google Scholar]
  6. Cho, J. C. & Giovannoni, S. J.(2006).Pelagibaca bermudensis gen. nov., sp. nov., a novel marine bacterium within the Roseobacter clade in the order Rhodobacterales. Int J Syst Evol Microbiol 56, 855–859.[CrossRef] [Google Scholar]
  7. Choi, D. H. & Cho, B. C.(2006a).Shimia marina gen. nov., sp. nov., a novel bacterium of the Roseobacter clade isolated from biofilm in a coastal fish farm. Int J Syst Evol Microbiol 56, 1869–1873.[CrossRef] [Google Scholar]
  8. Choi, D. H. & Cho, B. C.(2006b).Citreimonas salinaria gen. nov., sp. nov., a member of the Roseobacter clade isolated from a solar saltern. Int J Syst Evol Microbiol 56, 2799–2803.[CrossRef] [Google Scholar]
  9. Choi, D. H., Cho, J. C., Lanoil, B. D., Giovannoni, S. J. & Cho, B. C.(2007).Maribius salinus gen. nov., sp. nov., isolated from a solar saltern and Maribius pelagius sp. nov., cultured from the Sargasso Sea, belonging to the Roseobacter clade. Int J Syst Evol Microbiol 57, 270–275.[CrossRef] [Google Scholar]
  10. Cohen-Bazire, G., Sistrom, W. R. & Stanier, R. Y.(1957). Kinetic studies of pigment synthesis by nonsulfur purple bacteria. J Cell Comp Physiol 49, 25–68.[CrossRef] [Google Scholar]
  11. Collins, M. D. & Jones, D.(1980). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48, 459–470.[CrossRef] [Google Scholar]
  12. Collins, M. D., Pirouz, T., Goodfellow, M. & Minnikin, D. E.(1977). Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100, 221–230.[CrossRef] [Google Scholar]
  13. Cowan, S. T. & Steel, K. J.(1965).Manual for the Identification of Medical Bacteria. London: Cambridge University Press.
  14. Cui, X. L., Mao, P. H., Zeng, M., Li, W. J., Zhang, L. P., Xu, L. H. & Jiang, C. L.(2001).Streptomonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 51, 357–363. [Google Scholar]
  15. Dai, X., Wang, B. J., Yang, Q. X., Jiao, N. Z. & Liu, S. J.(2006).Yangia pacifica gen. nov., sp. nov., a novel member of the Roseobacter clade from coastal sediment of the east China Sea. Int J Syst Evol Microbiol 56, 529–533.[CrossRef] [Google Scholar]
  16. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  17. Felsenstein, J.(1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef] [Google Scholar]
  18. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  19. Felsenstein, J.(1993).phylip (phylogeny inference package), version 3.5. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  20. Garrity, G. M., Bell, J. A. & Lilburn, T.(2004). Taxonomic outline of the prokaryotes. In Bergey's Manual of Systematic Bacteriology, Release 5.0. http://www.bergeys.org/outlines/bergeysoutline_5_2004.pdf
  21. Garrity, G. M., Bell, J. A. & Lilburn, T.(2005). Order III. Rhodobacterales ord. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, p. 161. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  22. Giovannoni, S. & Rappé, M.(2000). Evolution, diversity and molecular ecology of marine prokaryotes. In Microbial Ecology of the Oceans, pp. 47–84. Edited by D. L. Kirchman. New York: Wiley.
  23. González, J. M., Mayer, F., Moran, M. A., Hodson, R. E. & Whitman, W. B.(1997).Sagittula stellata gen. nov., sp. nov., a lignin-transforming bacterium from a coastal environment. Int J Syst Bacteriol 47, 773–780.[CrossRef] [Google Scholar]
  24. Gregersen, T.(1978). Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5, 123–127.[CrossRef] [Google Scholar]
  25. Groth, I., Rodríguez, C., Schütze, B., Schmitz, P., Leistner, E. & Goodfellow, M.(2004). Five novel Kitasatospora species from soil: Kitasatospora arboriphila sp. nov., K. gansuensis sp. nov., K. nipponensis sp. nov., K. paranensis sp. nov. and K. terrestris sp. nov. Int J Syst Evol Microbiol 54, 2121–2129.[CrossRef] [Google Scholar]
  26. Hwang, C. Y. & Cho, B. C.(2008).Ponticoccus litoralis gen. nov., sp. nov., a marine bacterium in the family Rhodobacteraceae. Int J Syst Evol Microbiol 58, 1332–1338.[CrossRef] [Google Scholar]
  27. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  28. Kluge, A. G. & Farris, J. S.(1969). Quantitative phyletics and the evolution of anurans. Syst Zool 18, 1–32.[CrossRef] [Google Scholar]
  29. Kovacs, N.(1956). Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178, 703–704. [Google Scholar]
  30. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  31. Labrenz, M., Collins, M. D., Lawson, P. A., Tindall, B. J., Schumann, P. & Hirsch, P.(1999).Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49, 137–147.[CrossRef] [Google Scholar]
  32. Labrenz, M., Lawson, P. A., Tindall, B. J., Collins, M. D. & Hirsch, P.(2005).Roseisalinus antarcticus gen. nov., sp. nov., a novel aerobic bacteriochlorophyll a-producing α-proteobacterium isolated from hypersaline Ekho Lake, Antarctica. Int J Syst Evol Microbiol 55, 41–47.[CrossRef] [Google Scholar]
  33. Lee, K., Choo, Y. J., Giovannoni, S. J. & Cho, J. C.(2007).Maritimibacter alkaliphilus gen. nov., sp. nov., a genome-sequenced marine bacterium of the Roseobacter clade in the order Rhodobacterales. Int J Syst Evol Microbiol 57, 1653–1658.[CrossRef] [Google Scholar]
  34. Lee, O. O., Tsoi, Y. M. M., Li, X. C., Wong, P. K. & Qian, P. Y.(2007).Thalassococcus halodurans gen. nov., sp. nov., a novel halotolerant member of the Roseobacter clade isolated from the marine sponge Halichondria panicea at Friday Harbor, USA. Int J Syst Evol Microbiol 57, 1919–1924.[CrossRef] [Google Scholar]
  35. Macián, M. C., Arahal, D. R., Garay, E., Ludwig, W., Schleifer, K. H. & Pujalte, M. J.(2005).Thalassobacter stenotrophicus gen. nov., sp. nov., a novel marine α-proteobacterium isolated from Mediterranean sea water. Int J Syst Evol Microbiol 55, 105–110.[CrossRef] [Google Scholar]
  36. Manca, M. C., Lama, L., Improta, R., Esposito, E., Gambacorta, A. & Nicolaus, B.(1996). Chemical composition of two exopolysaccharides from Bacillus thermoantarcticus. Appl Environ Microbiol 62, 3265–3269. [Google Scholar]
  37. Martens, T., Heidorn, T., Pukall, R., Simon, M., Tindall, B. J. & Brinkhoff, T.(2006). Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol 56, 1293–1304.[CrossRef] [Google Scholar]
  38. Martínez-Cánovas, M. J., Quesada, E., Martínez-Checa, F., Moral, A. D. & Béjar, V.(2004).Salipiger mucescens gen. nov., sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium isolated from hypersaline soil, belonging to the α-Proteobacteria. Int J Syst Evol Microbiol 54, 1735–1740.[CrossRef] [Google Scholar]
  39. Martínez-Checa, F., Quesada, E., Martínez-Cánovas, M. J., Llamas, I. & Béjar, V.(2005).Palleronia marisminoris gen. nov., sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium belonging to the ‘Alphaproteobacteria’, isolated from a saline soil. Int J Syst Evol Microbiol 55, 2525–2530.[CrossRef] [Google Scholar]
  40. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  41. Minnikin, D. E., Collins, M. D. & Goodfellow, M.(1979). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47, 87–95.[CrossRef] [Google Scholar]
  42. Nishimura, Y., Muroga, Y., Saito, S., Shiba, T., Takamiya, K. & Shioi, Y.(1994). DNA relatedness and chemotaxonomic feature of aerobic bacteriochlorophyll-containing bacteria isolated from coasts of Australia. J Gen Appl Microbiol 40, 287–296.[CrossRef] [Google Scholar]
  43. Petursdottir, S. K. & Kristjansson, J. K.(1997).Silicibacter lacuscaerulensis gen. nov., sp. nov., a mesophilic moderately halophilic bacterium characteristic of the Blue lagoon geothermal lake in Iceland. Extremophiles 1, 94–99.[CrossRef] [Google Scholar]
  44. Quesada, E., Béjar, V. & Calvo, C.(1993). Exopolysaccharide production by Volcaniella eurihalina. Experientia 49, 1037–1041.[CrossRef] [Google Scholar]
  45. Rappé, M. S., Vergin, K. & Giovannoni, S. J.(2000). Phylogenetic comparisons of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems. FEMS Microbiol Ecol 33, 219–232.[CrossRef] [Google Scholar]
  46. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  47. Sasser, M.(1990). Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20, 16 [Google Scholar]
  48. Smibert, R. M. & Krieg, N. R.(1994). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  49. Suzuki, T., Muroga, Y., Takahama, M. & Nishimura, Y.(1999).Roseivivax halodurans gen. nov., sp. nov. and Roseivivax halotolerans sp. nov., aerobic bacteriochlorophyll-containing bacteria isolated from a saline lake. Int J Syst Bacteriol 49, 629–634.[CrossRef] [Google Scholar]
  50. Tamaoka, J., Katayama-Fujimura, Y. & Kuraishi, H.(1983). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54, 31–36.[CrossRef] [Google Scholar]
  51. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  52. Van Trappen, S., Mergaert, J. & Swings, J.(2004).Loktanella salsilacus gen. nov., sp. nov., Loktanella fryxellensis sp. nov. and Loktanella vestfoldensis sp. nov., new members of the Rhodobacter group, isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54, 1263–1269.[CrossRef] [Google Scholar]
  53. Wagner-Döbler, I., Rheims, H., Felske, A., Pukall, R. & Tindall, B. J.(2003).Jannaschia helgolandensis gen. nov., sp. nov., a novel abundant member of the marine Roseobacter clade from the North Sea. Int J Syst Evol Microbiol 53, 731–738.[CrossRef] [Google Scholar]
  54. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  55. Yi, H., Lim, Y. W. & Chun, J.(2007). Taxonomic evaluation of the genera Ruegeria and Silicibacter: a proposal to transfer the genus Silicibacter Petursdottir and Kristjansson 1999 to the genus Ruegeria Uchino et al. 1999. Int J Syst Evol Microbiol 57, 815–819.[CrossRef] [Google Scholar]
  56. Ying, J. Y., Wang, B. J., Dai, X., Yang, S. S., Liu, S. J. & Liu, Z. P.(2007).Wenxinia marina gen. nov., sp. nov., a novel member of the Roseobacter clade isolated from oilfield sediments of the South China Sea. Int J Syst Evol Microbiol 57, 1711–1716.[CrossRef] [Google Scholar]
  57. Yoon, J. H., Kang, S. J., Lee, S. Y. & Oh, T. K.(2007).Phaeobacter daeponensis sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 57, 856–861.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.006965-0
Loading
/content/journal/ijsem/10.1099/ijs.0.006965-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1561 - 1567

 



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error