1887

Abstract

A gas-vacuolate bacterium, strain 174, was isolated from a sea-ice core collected from Point Barrow, Alaska, USA. Comparative analysis of 16S rRNA gene sequences showed that this bacterium was most closely related to 37, with a similarity of >99 %. However, strain 174 could be clearly distinguished from closely related species by DNA–DNA hybridization; relatedness values determined by two different methods between strain 174 and 37 were 58.4 and 55.7 % and those between strain 174 and DSM 10704 were 46.1 and 33.1 %, which are well below the 70 % level used to define a distinct species. Phenotypic analysis, including cell size (strain 174 is the largest member of the genus , with rod-shaped cells, 8–18 μm long), further differentiated strain 174 from other members of the genus . Strain 174 could be distinguished from its closest relative, , by its utilization of -mannose and -xylose as sole carbon sources, its ability to ferment -inositol and its inability to use fumarate and glycerol as sole carbon sources. In addition, strain 174 contained gas vacuoles of two distinct morphologies and grew at temperatures ranging from below 0 to 10 °C and its optimal NaCl concentration for growth was 3.5 %. The DNA G+C content was 40 mol%. Whole-cell fatty acid analysis showed that 16 : 17 and 16 : 0 comprised 44.9 and 26.4 % of the total fatty acid content, respectively. The name sp. nov. is proposed for this novel species, with strain 174 (=DSM 17665 =CCM 7498) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.007773-0
2010-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/1/84.html?itemId=/content/journal/ijsem/10.1099/ijs.0.007773-0&mimeType=html&fmt=ahah

References

  1. Auman A. J., Breezee J. L., Gosink J. J., Kämpfer P., Staley J. T. 2006; Psychromonas ingrahamii sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice. Int J Syst Evol Microbiol 56:1001–1007 [CrossRef]
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith L. A. Struhl K. (editors) 1989 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  3. Bowman J. P., Gosink J. J., McCammon S. A., Lewis T. E., Nichols D. S., Nichols P. D., Skerratt J. H., Staley J. T., McMeekin T. A. 1998 Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22 : 6 ω 3). Int J Syst Bacteriol 48, 1171–1180 [CrossRef]
  4. Breezee J., Cady N., Staley J. T. 2004; Subfreezing growth of the sea ice bacterium “ Psychromonas ingrahamii ”. Microb Ecol 47:300–304
    [Google Scholar]
  5. Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. (editors) 2005; Genus XII. Psychromonas Mountfort, Rainey, Burghardt, Kaspar and Stackebrandt 1998b, 631VP . In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 2 part B, pp. 478–480 New York: Springer;
    [Google Scholar]
  6. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  7. Cole J. R., Chai B., Farris R. J., Wang Q., Kulam-Syed-Mohideen A. S., McGarrell D. M., Bandela A. M., Cardenas E., Garrity G. M., Tiedje J. M. 2007; The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:D169–D172 [CrossRef]
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  9. Deming J. W., Somers L. K., Straube W. L., Swartz D. G., MacDonell M. T. 1988; Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst Appl Microbiol 10:152–160 [CrossRef]
    [Google Scholar]
  10. Dyksterhouse S. E., Gray J. P., Herwig R. P., Lara J. C., Staley J. T. 1995; Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123 [CrossRef]
    [Google Scholar]
  11. Eilers H., Pernthaler J., Glöckner F. O., Amann R. 2000; Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 66:3044–3051 [CrossRef]
    [Google Scholar]
  12. Felsenstein J. 1989; phylip – phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  13. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. (editors) 1981 Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Gosink J. J., Staley J. T. 1995; Biodiversity of gas vacuolate bacteria from Antarctic sea ice and water. Appl Environ Microbiol 61:3486–3489
    [Google Scholar]
  15. Gosink J. J., Irgens R. L., Staley J. T. 1993; Vertical distribution of bacteria in Arctic sea ice. FEMS Microbiol Ecol 102:85–90 [CrossRef]
    [Google Scholar]
  16. Gosink J. J., Woese C. R., Staley J. T. 1998; Polaribacter gen. nov., with three new species, P.irgensii sp. nov., P. franzmannii sp.nov. and P. filamentus sp. nov.,gas vacuolate polar marine bacteria of the Cytophaga Flavobacterium Bacteroides group and reclassification of ‘ Flectobacillus glomeratus ’ as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 48:223–235 [CrossRef]
    [Google Scholar]
  17. Groudieva T., Grote R., Antranikian G. 2003; Psychromonas arctica sp. nov., a novel psychrotolerant, biofilm-producing bacterium isolated from Spitzbergen. Int J Syst Evol Microbiol 53:539–545 [CrossRef]
    [Google Scholar]
  18. Hosoya S., Yasumoto-Hirose M., Adachi K., Katsuta A., Kasai H. 2008; Psychromonas heitensis sp. nov., a psychrotolerant bacterium isolated from seawater in Japan. Int J Syst Evol Microbiol 58:2253–2257 [CrossRef]
    [Google Scholar]
  19. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  20. Irgens R. L., Suzuki I., Staley J. T. 1989; Gas vacuolate bacteria obtained from marine waters of Antarctica. Curr Microbiol 18:261–265 [CrossRef]
    [Google Scholar]
  21. Ivanova E. P., Flavier S., Christen R. 2004; Phylogenetic relationships among marine Alteromonas -like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam.nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 54:1773–1788 [CrossRef]
    [Google Scholar]
  22. Kawasaki K., Nogi Y., Hishinuma M., Nodasaka Y., Matsuyama H., Yumoto I. 2002; Psychromonas marina sp. nov., a novel halophilic, facultatively psychrophilic bacterium isolated from the coast of the Okhotsk Sea. Int J Syst Evol Microbiol 52:1455–1459 [CrossRef]
    [Google Scholar]
  23. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  24. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. other authors 2007; clustal w and clustal x version 2.0. Bioinformatics 23:2947–2948 [CrossRef]
    [Google Scholar]
  25. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  26. MIDI 1993 Microbial Identification System Operating Manual , version 4 Newark, DE: MIDI, Inc;
    [Google Scholar]
  27. Miyazaki M., Nogi Y., Fujiwara Y., Horikoshi K. 2008; Psychromonas japonica sp. nov., Psychromonas aquimarina sp.nov., Psychromonas macrocephali sp. nov. and Psychromonas ossibalaenae sp. nov., psychrotrophic bacteria isolated from sediment adjacent to sperm whale carcasses off Kagoshima, Japan. Int J Syst Evol Microbiol 58:1709–1714 [CrossRef]
    [Google Scholar]
  28. Morita R. Y. 1975; Psychrophilic bacteria. Bacteriol Rev 39:144–167
    [Google Scholar]
  29. Mountfort D. O., Rainey F. A., Burghardt J., Kaspar H. F., Stackebrandt E. 1998; Psychromonas antarcticus gen. nov., sp. nov. a new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo Ice Shelf, Antarctica. Arch Microbiol 169:231–238 [CrossRef]
    [Google Scholar]
  30. Nicholas K. B., Nicholas H. B. Jr, Deerfield D. W. II 1997; GeneDoc: analysis and visualization of genetic variation. EMBNEW News 4: 14
    [Google Scholar]
  31. Nogi Y., Kato C., Horikoshi K. 2002; Psychromonas kaikoae sp. nov., a novel piezophilic bacterium from the deepest cold-seep sediments in the Japan Trench. Int J Syst Evol Microbiol 52:1527–1532 [CrossRef]
    [Google Scholar]
  32. Nogi Y., Hosoya S., Kato C., Horikoshi K. 2004; Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol 54:1627–1631 [CrossRef]
    [Google Scholar]
  33. Nogi Y., Hosoya S., Kato C., Horikoshi K. 2007; Psychromonas hadalis sp. nov., a novel piezophilic bacterium isolated from the bottom of the Japan Trench. Int J Syst Evol Microbiol 57:1360–1364 [CrossRef]
    [Google Scholar]
  34. Page R. D. M. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  35. Riley M., Staley J. T., Danchin A., Wang T. Z., Brettin T. S., Hauser L. J., Land M. L., Thompson L. S. 2008; Genomics of an extreme psychrophile, Psychromonas ingrahamii . BMC Genomics 9:210–228 [CrossRef]
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Staley J. T., Gosink J. J. 1999; Poles apart: biodiversity and biogeography of sea ice bacteria. Annu Rev Microbiol 53:189–215 [CrossRef]
    [Google Scholar]
  38. Staley J. T., Irgens R. L., Herwig R. P. 1989; Gas vacuolate bacteria from the sea ice of Antarctica. Appl Environ Microbiol 55:1033–1036
    [Google Scholar]
  39. Walsby A. E. 1994; Gas vesicles. Microbiol Rev 58:94–144
    [Google Scholar]
  40. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  41. Xu Y., Nogi Y., Kato C., Liang Z., Rüger H.-J., De Kegel D., Glansdorff N. 2003; Psychromonas profunda sp. nov., a psychropiezophilic bacterium from deep Atlantic sediments. Int J Syst Evol Microbiol 53:527–532 [CrossRef]
    [Google Scholar]
  42. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.007773-0
Loading
/content/journal/ijsem/10.1099/ijs.0.007773-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error