1887

Abstract

A novel thermophilic, heterotrophic bacterium, strain TBF 19.5.1, was isolated from oil production fluid at the Troll B oil platform in the North Sea. Cells of strain TBF 19.5.1 were non-motile rods with a sheath-like structure, or toga. The strain was Gram-negative and grew at 20–80 °C (optimum 65 °C), pH 5.5–8.0 (optimum pH 6.8) and NaCl concentrations of 10–60 g l (optimum 25–30 g l). For a member of the order , the novel isolate is capable of unprecedented growth at low temperatures, with an optimal doubling time of 175 min (specific growth rate 0.24 h) and a final optical density of >1.4 when grown on pyruvate at 37 °C. Various carbohydrates, proteinaceous compounds and pyruvate served as growth substrates. Thiosulfate, but not elemental sulfur, enhanced growth of the isolate. Sulfate also enhanced growth, but sulfide was not produced. The strain grew in the presence of up to approximately 15 % oxygen, but only if cysteine was included in the medium. Growth of the isolate was inhibited by acetate, lactate and propionate, while butanol and malate prevented growth. The major fermentation products formed on maltose were hydrogen, carbon dioxide and acetic acid, with traces of ethanol and propionic acid. The G+C content of the genomic DNA was 42.5 mol%. Phylogenetic analyses of the 16S and 23S rRNA gene sequences as well as 29 protein-coding ORFs placed the strain within the bacterial order . Based on the phylogenetic analyses and the possession of a variety of physiological characteristics not previously found in any species of this order, it is proposed that the strain represents a novel species of a new genus within the family , order . The name gen. nov., sp. nov. is proposed. The type strain of is TBF 19.5.1 (=DSM 21960 =ATCC BAA-1733).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.008045-0
2009-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/12/2991.html?itemId=/content/journal/ijsem/10.1099/ijs.0.008045-0&mimeType=html&fmt=ahah

References

  1. Alain, K., Marteinsson, V. T., Miroshnichenko, M. L., Bonch-Osmolovskaya, E. A., Prieur, D. & Birrien, J. L.(2002).Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52, 1331–1339.[CrossRef] [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef] [Google Scholar]
  3. Andrews, K. T. & Patel, B. K.(1996).Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46, 265–269.[CrossRef] [Google Scholar]
  4. Antoine, E., Cilia, V., Meunier, J. R., Guezennec, J., Lesongeur, F. & Barbier, G.(1997).Thermosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales, isolated from deep-sea hydrothermal vents in the southwestern Pacific Ocean. Int J Syst Bacteriol 47, 1118–1123.[CrossRef] [Google Scholar]
  5. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S.(1979). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296. [Google Scholar]
  6. Balk, M., Weijma, J. & Stams, A. J. M.(2002).Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int J Syst Evol Microbiol 52, 1361–1368.[CrossRef] [Google Scholar]
  7. Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S. & other authors(2004). The Pfam protein families database. Nucleic Acids Res 32, D138–D141.[CrossRef] [Google Scholar]
  8. Briones, A. M., Daugherty, B. J., Angenent, L. T., Rausch, K. D., Tumbleson, M. E. & Raskin, L.(2007). Microbial diversity and dynamics in multi- and single-compartment anaerobic bioreactors processing sulfate-rich waste streams. Environ Microbiol 9, 93–106.[CrossRef] [Google Scholar]
  9. Charbonnier, F. & Forterre, P.(1995). Purification of plasmids from thermophilic and hyperthermophilic archaea. In Archaea: a Laboratory ManualThermophiles, pp. 87–90. Edited by F. T. Robb & A. R. Place. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  10. Chouari, R., Le Paslier, D., Daegelen, P., Ginestet, P., Weissenbach, J. & Sghir, A.(2005). Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ Microbiol 7, 1104–1115.[CrossRef] [Google Scholar]
  11. Davey, M. E., Wood, W. A., Key, R., Nakamura, K. & Stahl, D. A.(1993). Isolation of three species of Geotoga and Petrotoga: two new genera, representing a new lineage in the bacterial line of descent distantly related to the “Thermotogales”. Syst Appl Microbiol 16, 191–200.[CrossRef] [Google Scholar]
  12. Delcher, A. L., Harmon, D., Kasif, S., White, O. & Salzberg, S. L.(1999). Improved microbial gene identification with glimmer. Nucleic Acids Res 27, 4636–4641.[CrossRef] [Google Scholar]
  13. Ewing, B. & Green, P.(1998). Base-calling of automated sequencer traces using phed. II. Error probabilities. Genome Res 8, 186–194. [Google Scholar]
  14. Ewing, B., Hillier, L., Wendl, M. C. & Green, P.(1998). Base-calling of automated sequencer traces using phed. I. Accuracy assessment. Genome Res 8, 175–185.[CrossRef] [Google Scholar]
  15. Fardeau, M. L., Ollivier, B., Patel, B. K. C., Magot, M., Thomas, P., Rimbault, A., Rocchiccioli, F. & Garcia, J. L.(1997).Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47, 1013–1019.[CrossRef] [Google Scholar]
  16. Frickey, T. & Lupas, A. N.(2004). PhyloGenie: automated phylome generation and analysis. Nucleic Acids Res 32, 5231–5238.[CrossRef] [Google Scholar]
  17. Friedrich, A. B. & Antranikian, G.(1996). Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales. Appl Environ Microbiol 62, 2875–2882. [Google Scholar]
  18. Gordon, D., Abajian, C. & Green, P.(1998). Consed: a graphical tool for sequence finishing. Genome Res 8, 195–202.[CrossRef] [Google Scholar]
  19. Grassia, G. S., McLean, K. M., Glenat, P., Bauld, J. & Sheehy, A. J.(1996). A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol Ecol 21, 47–58.[CrossRef] [Google Scholar]
  20. Huber, R., Langworthy, T. A., König, H., Thomm, M., Woese, C. R., Sleytr, U. B. & Stetter, K. O.(1986).Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144, 324–333.[CrossRef] [Google Scholar]
  21. Huber, R., Woese, C. R., Langworthy, T. A., Frick, H. & Stetter, K. O.(1989).Thermosipho africanus gen. nov., represents a new genus of thermophilic eubacteria within the “thermotogales”. Syst Appl Microbiol 12, 32–37.[CrossRef] [Google Scholar]
  22. Huber, R., Woese, C. R., Langworthy, T. A., Kristjansson, J. K. & Stetter, K. O.(1990).Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the “Thermotogales”. Arch Microbiol 154, 105–111.[CrossRef] [Google Scholar]
  23. Jannasch, H. W., Huber, R., Belkin, S. & Stetter, K. O.(1988).Thermotoga neapolitana sp. nov. of the extremely thermophilic eubacterial genus Thermotoga. Arch Microbiol 150, 103–104.[CrossRef] [Google Scholar]
  24. Jeanthon, C., Reysenbach, A. L., L'Haridon, S., Gambacorta, A., Pace, N. R., Glenat, P. & Prieur, D.(1995).Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch Microbiol 164, 91–97.[CrossRef] [Google Scholar]
  25. L'Haridon, S., Miroshnichenko, M. L., Hippe, H., Fardeau, M. L., Bonch-Osmolovskaya, E., Stackebrandt, E. & Jeanthon, C.(2001).Thermosipho geolei sp nov., a thermophilic bacterium isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 51, 1327–1334. [Google Scholar]
  26. L'Haridon, S., Miroshnichenko, M. L., Hippe, H., Fardeau, M. L., Bonch-Osmolovskaya, E. A., Stackebrandt, E. & Jeanthon, C.(2002).Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 52, 1715–1722.[CrossRef] [Google Scholar]
  27. Li, H., Yang, S.-Z., Mu, B.-Z., Rong, Z.-F. & Zhang, J.(2006). Molecular analysis of the bacterial community in a continental high-temperature and water-flooded petroleum reservoir. FEMS Microbiol Lett 257, 92–98.[CrossRef] [Google Scholar]
  28. Li, H., Yang, S.-Z., Mu, B.-Z., Rong, Z.-F. & Zhang, J.(2007). Molecular phylogenetic diversity of the microbial community associated with a high-temperature petroleum reservoir at an offshore oilfield. FEMS Microbiol Ecol 60, 74–84.[CrossRef] [Google Scholar]
  29. Lie, T. J., Clawson, M. L., Godchaux, W. & Leadbetter, E. R.(1999). Sulfidogenesis from 2-aminoethanesulfonate (taurine) fermentation by a morphologically unusual sulfate-reducing bacterium, Desulforhopalus singaporensis sp. nov. Appl Environ Microbiol 65, 3328–3334. [Google Scholar]
  30. Lien, T., Madsen, M., Rainey, F. A. & Birkeland, N. K.(1998).Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int J Syst Bacteriol 48, 1007–1013.[CrossRef] [Google Scholar]
  31. Lowe, T. M. & Eddy, S. R.(1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25, 955–964.[CrossRef] [Google Scholar]
  32. Magot, M., Ollivier, B. & Patel, B. K.(2000). Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek 77, 103–116.[CrossRef] [Google Scholar]
  33. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  34. Miranda-Tello, E., Fardeau, M.-L., Thomas, P., Ramirez, F., Casalot, L., Cayol, J.-L., Garcia, J. L. & Ollivier, B.(2004).Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. Int J Syst Evol Microbiol 54, 169–174.[CrossRef] [Google Scholar]
  35. Miranda-Tello, E., Fardeau, M.-L., Joulian, C., Magot, M., Thomas, P., Tholozan, J.-L. & Ollivier, B.(2007).Petrotoga halophila sp nov., a thermophilic, moderately halophilic, fermentative bacterium isolated from an offshore oil well in Congo. Int J Syst Evol Microbiol 57, 40–44.[CrossRef] [Google Scholar]
  36. Nesbø, C. L. & Doolittle, W. F.(2003). Active self-splicing group I introns in 23S rRNA genes of hyperthermophilic bacteria, derived from introns in eukaryotic organelles. Proc Natl Acad Sci U S A 100, 10806–10811.[CrossRef] [Google Scholar]
  37. Nesbø, C. L., Dlutek, M., Zhaxybayeva, O. & Doolittle, W. F.(2006). Evidence for existence of “mesotogas,” members of the order Thermotogales adapted to low-temperature environments. Appl Environ Microbiol 72, 5061–5068.[CrossRef] [Google Scholar]
  38. Nesbø, C. L., Bapteste, E., Curtis, B., Dahle, H., Lopez, P., Macleod, D., Dlutek, M., Bowman, S., Zhaxybayeva, O. & other authors(2009). The genome of Thermosipho africanus TCF52B: lateral genetic connections to the Firmicutes and Archaea. J Bacteriol 191, 1974–1978.[CrossRef] [Google Scholar]
  39. Nunoura, T., Oida, H., Miyazaki, M., Suzuki, Y., Takai, K. & Horikoshi, K.(2007).Marinitoga okinawensis sp. nov., a novel thermophilic and anaerobic heterotroph isolated from a deep-sea hydrothermal field, Southern Okinawa Trough. Int J Syst Evol Microbiol 57, 467–471.[CrossRef] [Google Scholar]
  40. Orphan, V. J., Taylor, L. T., Hafenbradl, D. & Delong, E. F.(2000). Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66, 700–711.[CrossRef] [Google Scholar]
  41. Patel, B. K. C., Morgan, H. W. & Daniel, R. M.(1985).Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141, 63–69.[CrossRef] [Google Scholar]
  42. Postec, A., Le Breton, C., Fardeau, M.-L., Lesongeur, F., Pignet, P., Querellou, J., Ollivier, B. & Godfroy, A.(2005).Marinitoga hydrogenitolerans sp. nov., a novel member of the order Thermotogales isolated from a black smoker chimney on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55, 1217–1221.[CrossRef] [Google Scholar]
  43. Ravot, G., Magot, M., Fardeau, M.-L., Patel, B. K., Prensier, G., Egan, A., Garcia, J. L. & Ollivier, B.(1995).Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int J Syst Bacteriol 45, 308–314.[CrossRef] [Google Scholar]
  44. Schmidt, H. A., Strimmer, K., Vingron, M. & von Haeseler, A.(2002).tree-puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502–504.[CrossRef] [Google Scholar]
  45. Swofford, D. L.(2002).paup*: Phylogenetic analysis using parsimony (and other methods), version 4. Sunderland, MA: Sinauer Associates.
  46. Takahata, Y., Nishijima, M., Hoaki, T. & Maruyama, T.(2001).Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol 51, 1901–1909.[CrossRef] [Google Scholar]
  47. Takai, K. & Horikoshi, K.(2000).Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4, 9–17.[CrossRef] [Google Scholar]
  48. Urios, L., Cueff-Gauchard, V., Pignet, P., Postec, A., Fardeau, M.-L., Ollivier, B. & Barbier, G.(2004).Thermosipho atlanticus sp. nov., a novel member of the Thermotogales isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 54, 1953–1957.[CrossRef] [Google Scholar]
  49. Wery, N., Lesongeur, F., Pignet, P., Derennes, V., Cambon-Bonavita, M.-A., Godfroy, A. & Barbier, G.(2001).Marinitoga camini gen. nov., sp. nov., a rod-shaped bacterium belonging to the order Thermotogales, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51, 495–504. [Google Scholar]
  50. Whelan, S. & Goldman, N.(2001). A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18, 691–699.[CrossRef] [Google Scholar]
  51. Widdel, F., Kohing, G. W. & Mayer, F.(1983). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty-acids. 3: Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134, 286–294.[CrossRef] [Google Scholar]
  52. Windberger, E., Huber, R., Trincone, A., Fricke, H. & Stetter, K. O.(1989).Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs. Arch Microbiol 151, 506–512.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.008045-0
Loading
/content/journal/ijsem/10.1099/ijs.0.008045-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 2991 - 3000

Annotation of the fosmid clone from strain TBF 19.5.1 .

Minimum-evolution tree constructed from maximum-likelihood distances estimated from the KO_3 ORF encoding chaperonin GroEL.

[PDF file of Supplementary Table and Figure](128 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error