1887

Abstract

A novel red-pigmented halophilic archaeon, strain A29, was isolated from shrimp jeotgal, a traditional salt-fermented food from Korea. This strain grows in the ranges 10–30 % (w/v) NaCl, 17–50 °C and pH 6.5–8.5, with optimal growth occurring at 15–20 % NaCl, 37–45 °C and pH 7.0–7.5. The isolate is Gram-negative and non-motile. Phylogenetic analysis, based on 16S rRNA gene sequences, showed that strain A29 is associated with the genus and closely related to the species (99.0 % similarity). However, DNA–DNA hybridization experiments revealed that the level of hybridization between strain A29 and related strains of is less than 70 %. The polar lipid fraction consists of phosphatidylglyerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me) and mannose-2,6-disulfate(1-2)-glucose glycerol diether (S-DGD). The G+C content of genomic DNA of the type strain is 62.3 mol%. On the basis of this polyphasic taxonomic study, strain A29 should be placed in the genus as a novel species, for which the name sp. nov. is proposed. The type strain of the new species is A29 (=KCTC 4020=DSM 18794=JCM 14585=CECT 7218).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.008243-0
2009-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/9/2359.html?itemId=/content/journal/ijsem/10.1099/ijs.0.008243-0&mimeType=html&fmt=ahah

References

  1. Aslam, Z., Lee, C. S., Kim, K. H., Im, W. T., Ten, L. N. & Lee, S. T.(2007a).Methylobacterium jeotgali sp. nov., a non-pigmented, facultatively methylotrophic bacterium isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 57, 566–571.[CrossRef] [Google Scholar]
  2. Aslam, Z., Lim, J. H., Im, W. T., Yasir, M., Chung, Y. R. & Lee, S. T.(2007b).Salinicoccus jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 57, 633–638.[CrossRef] [Google Scholar]
  3. Baker, G. C., Smith, J. J. & Cowan, D. A.(2003). Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55, 541–555.[CrossRef] [Google Scholar]
  4. Cui, H. L., Tohty, D., Zhou, P. J. & Liu, S. J.(2006).Haloterrigena longa sp. nov. and Haloterrigena limicola sp. nov., extremely halophilic archaea isolated from a salt lake. Int J Syst Evol Microbiol 56, 1837–1840.[CrossRef] [Google Scholar]
  5. Dussault, H. P.(1955). An improved technique for staining red halophilic bacteria. J Bacteriol 70, 484–485. [Google Scholar]
  6. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  7. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors)(1994).Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  8. González, J. M. & Saiz-Jimenez, C.(2002). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4, 770–773.[CrossRef] [Google Scholar]
  9. González, C., Gutiérrez, C. & Ramirez, C.(1978).Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24, 710–715.[CrossRef] [Google Scholar]
  10. Grant, W. D.(2004). Life at low water activity. Philos Trans R Soc Lond B Biol Sci 359, 1249–1267.[CrossRef] [Google Scholar]
  11. Gutiérrez, C. & González, C.(1972). Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 24, 516–517. [Google Scholar]
  12. Gutiérrez, M. C., Castillo, A. M., Kamekura, M. & Ventosa, A.(2008).Haloterrigena salina sp. nov., an extremely halophilic archaeon isolated from a salt lake. Int J Syst Evol Microbiol 58, 2880–2884.[CrossRef] [Google Scholar]
  13. Kluge, A. G. & Farris, J. S.(1969). Quantitative phyletics and the evolution of anurans. Syst Zool 18, 1–32.[CrossRef] [Google Scholar]
  14. McGenity, T. J., Gemmell, R. T. & Grant, W. D.(1998). Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov. Int J Syst Bacteriol 48, 1187–1196.[CrossRef] [Google Scholar]
  15. Montalvo-Rodríguez, R., López-Garriga, J., Vreeland, R. H., Oren, A., Ventosa, A. & Kamekura, M.(2000).Haloterrigena thermotolerans sp. nov., a halophilic archaeon from Puerto Rico. Int J Syst Evol Microbiol 50, 1065–1071.[CrossRef] [Google Scholar]
  16. Oren, A. & Ventosa, A.(2002). International Committee on Systematics of Prokaryotes. Subcommittee on the taxonomy of Halobacteriaceae. Int J Syst Evol Microbiol 52, 289–290. [Google Scholar]
  17. Oren, A., Ventosa, A. & Grant, W. D.(1997). Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47, 233–238.[CrossRef] [Google Scholar]
  18. Purdy, K. J., Cresswell-Maynard, T. D., Nedwell, D. B., McGenity, T. J., Grant, W. D., Timmis, K. N. & Embley, T. M.(2004). Isolation of haloarchaea that grow at low salinities. Environ Microbiol 6, 591–595.[CrossRef] [Google Scholar]
  19. Roh, S. W., Nam, Y.-D., Chang, H.-W., Kim, K.-H., Lee, H.-J., Oh, H.-M. & Bae, J.-W.(2007a).Natronococcus jeotgali sp. nov., a halophilic archaeon isolated from shrimp jeotgal, a traditional fermented seafood from Korea. Int J Syst Evol Microbiol 57, 2129–2131.[CrossRef] [Google Scholar]
  20. Roh, S. W., Nam, Y. D., Chang, H. W., Sung, Y., Kim, K. H., Oh, H. M. & Bae, J. W.(2007b).Halalkalicoccus jeotgali sp. nov., a halophilic archaeon from shrimp jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 57, 2296–2298.[CrossRef] [Google Scholar]
  21. Roh, S. W., Sung, Y., Nam, Y. D., Chang, H. W., Kim, K. H., Yoon, J. H., Jeon, C. O., Oh, H. M. & Bae, J. W.(2008).Arthrobacter soli sp. nov., a novel bacterium isolated from wastewater reservoir sediment. J Microbiol 46, 40–44.[CrossRef] [Google Scholar]
  22. Romano, I., Poli, A., Finore, I., Huertas, F. J., Gambacorta, A., Pelliccione, S., Nicolaus, G., Lama, L. & Nicolaus, B.(2007).Haloterrigena hispanica sp. nov., an extremely halophilic archaeon from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 57, 1499–1503.[CrossRef] [Google Scholar]
  23. Rzhetsky, A. & Nei, M.(1992). A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9, 945–967. [Google Scholar]
  24. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  25. Sambrook, J., Fritsch, E. F. & Maniatis, T.(1989).Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  26. Sehgal, S. N. & Gibbons, N. E.(1960). Effect of some metal ions on the growth of Halobacterium cutirubrum. Can J Microbiol 6, 165–169.[CrossRef] [Google Scholar]
  27. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef] [Google Scholar]
  28. Tapingkae, W., Tanasupawat, S., Itoh, T., Parkin, K. L., Benjakul, S., Visessanguan, W. & Valyasevi, R.(2008).Natrinema gari sp. nov., a halophilic archaeon isolated from fish sauce in Thailand. Int J Syst Evol Microbiol 58, 2378–2383.[CrossRef] [Google Scholar]
  29. Tindall, B. J.(1990). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef] [Google Scholar]
  30. Ventosa, A., Gutiérrez, M. C., Kamekura, M. & Dyall-Smith, M. L.(1999). Proposal to transfer Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov. Int J Syst Bacteriol 49, 131–136.[CrossRef] [Google Scholar]
  31. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  32. Xin, H., Itoh, T., Zhou, P., Suzuki, K., Kamekura, M. & Nakase, T.(2000).Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 50, 1297–1303.[CrossRef] [Google Scholar]
  33. Xu, X. W., Liu, S. J., Tohty, D., Oren, A., Wu, M. & Zhou, P. J.(2005a).Haloterrigena saccharevitans sp. nov., an extremely halophilic archaeon from Xin-Jiang, China. Int J Syst Evol Microbiol 55, 2539–2542.[CrossRef] [Google Scholar]
  34. Xu, X. W., Ren, P. G., Liu, S. J., Wu, M. & Zhou, P. J.(2005b).Natrinema altunense sp. nov., an extremely halophilic archaeon isolated from a salt lake in Altun Mountain in Xinjiang, China. Int J Syst Evol Microbiol 55, 1311–1314.[CrossRef] [Google Scholar]
  35. Yoon, J. H., Kang, S. S., Lee, K. C., Kho, Y. H., Choi, S. H., Kang, K. H. & Park, Y. H.(2001).Bacillus jeotgali sp. nov., isolated from jeotgal, Korean traditional fermented seafood. Int J Syst Evol Microbiol 51, 1087–1092.[CrossRef] [Google Scholar]
  36. Yoon, J. H., Kang, K. H. & Park, Y. H.(2003a).Psychrobacter jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 53, 449–454.[CrossRef] [Google Scholar]
  37. Yoon, J. H., Lee, K. C., Weiss, N., Kang, K. H. & Park, Y. H.(2003b).Jeotgalicoccus halotolerans gen. nov., sp. nov. and Jeotgalicoccus psychrophilus sp. nov., isolated from the traditional Korean fermented seafood jeotgal. Int J Syst Evol Microbiol 53, 595–602.[CrossRef] [Google Scholar]
  38. Yoon, J. H., Jung, S. Y., Kim, W., Nam, S. W. & Oh, T. K.(2006).Nesterenkonia jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 56, 2587–2592.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.008243-0
Loading
/content/journal/ijsem/10.1099/ijs.0.008243-0
Loading

Data & Media loading...

Supplements

Phylogenetic tree, based on 16S rRNA gene sequences, showing the position of strain A29 with respect to other type species of the genus and other haloarchaea. The tree was generated by the minimum-evolution (top) and maximum-parsimony (bottom) methods. The numbers at the nodes indicate bootstrap values (1000 replications). Bar, 0.02 accumulated changes per nucleotide.

PDF

Phylogenetic tree, based on 16S rRNA gene sequences, showing the position of strain A29 with respect to other type species of the genus and other haloarchaea. The tree was generated by the minimum-evolution (top) and maximum-parsimony (bottom) methods. The numbers at the nodes indicate bootstrap values (1000 replications). Bar, 0.02 accumulated changes per nucleotide.

IMAGE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error