1887

Abstract

A Gram-negative, non-spore-forming, cream-coloured bacterial strain, UM2, was isolated from an open hexachlorocyclohexane (HCH) dump site at Ummari village in Lucknow, India. Data generated from a polyphasic approach including phenotypic, genotypic and chemotaxonomic analyses confirmed that strain UM2 belonged to the genus . The highest similarity found to the 16S rRNA gene sequence of strain UM2 was 99.4 %, with DSM 6014, whereas the DNA–DNA relatedness value between these strains was 31 %, indicating that they represent separate species. The DNA G+C content of UM2 was 66.9 mol%. The respiratory pigment ubiquinone Q-10 was present. The predominant fatty acids were summed feature 8 (C 6 and/or C 7; 32.9 %), C cyclo 8 (15.5 %) and C (12.1 %). The major polar lipids were phosphatidylcholine, phosphatidylglycerol and phosphatidyldimethylethanolamine. -Homospermidine was the major polyamine observed. On the basis of the data reported, it was concluded that UM2 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is UM2 (=MTCC 9473 =CCM 7545).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.008995-0
2010-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/5/1038.html?itemId=/content/journal/ijsem/10.1099/ijs.0.008995-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Arden-Jones M. P., McCarthy A. J., Cross T. 1979; Taxonomic and serological studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula. J Gen Microbiol 115:343–354 [CrossRef]
    [Google Scholar]
  3. Asker D., Beppu T., Ueda K. 2007; Sphingomonas astaxanthinifaciens sp. nov., a novel astaxanthin-producing bacterium of the family Spingomonadaceae isolated from Misasa, Tottori, Japan. FEMS Microbiol Lett 273:140–148 [CrossRef]
    [Google Scholar]
  4. Bala S., Khanna R., Dadhwal M., Prabagaran S. R., Shivaji S., Cullum J., Lal R. 2004; Reclassification of Amycolatopsis mediterranei DSM 46095 as Amycolatopsis rifamycinica sp. nov. Int J Syst Evol Microbiol 54:1145–1149 [CrossRef]
    [Google Scholar]
  5. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [CrossRef]
    [Google Scholar]
  6. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75:4801–4805 [CrossRef]
    [Google Scholar]
  7. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  8. Busse H.-J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [CrossRef]
    [Google Scholar]
  9. Busse H.-J., Kämpfer P., Denner E. B. M. 1999; Chemotaxonomic characterisation of Sphingomonas . J Ind Microbiol Biotechnol 23:242–251 [CrossRef]
    [Google Scholar]
  10. Busse H.-J., Denner E. B. M., Buczolits S., Salkinoja-Salonen M., Bennasar A., Kämpfer P. 2003; Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov.,air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . Int J Syst Evol Microbiol 53:1253–1260 [CrossRef]
    [Google Scholar]
  11. Christensen W. B. 1946; Urea decomposition as means of differentiating Proteus and Paracolon cultures from each other and from Salmonella and Shigella . J Bacteriol 52:461–466
    [Google Scholar]
  12. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef]
    [Google Scholar]
  13. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470 [CrossRef]
    [Google Scholar]
  14. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  15. Dadhwal M., Singh A., Prakash O., Gupta S. K., Kumari K., Sharma P., Jit S., Verma M., Holliger C., Lal R. 2009; Proposal of biostimulation for hexachlorocyclohexane (HCH)-decontamination and characterization of culturable bacterial community from high-dose point HCH-contaminated soils. J Appl Microbiol 106:381–392 [CrossRef]
    [Google Scholar]
  16. Denner E. B. M., Kämpfer P., Busse H.-J., Moore E. R. B. 1999; Reclassification of Pseudomonas echinoides Heumann 1962, 343AL, in the genus Sphingomonas as Sphingomonas echinoides comb. nov. Int J Syst Bacteriol 49:1103–1109 [CrossRef]
    [Google Scholar]
  17. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  18. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773 [CrossRef]
    [Google Scholar]
  19. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N. 1974; Nocardia coeliaca , Nocardia autotrophica , and the nocardin strain. Int J Syst Bacteriol 24:54–63 [CrossRef]
    [Google Scholar]
  20. Gupta S. K., Kumari R., Prakash O., Lal R. 2008; Pseudomonas panipatensis sp. nov., isolated from an oil-contaminated site. Int J Syst Evol Microbiol 58:1339–1345 [CrossRef]
    [Google Scholar]
  21. Jit S., Dadhwal M., Prakash O., Lal R. 2008; Flavobacterium lindanitolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 58:1665–1669 [CrossRef]
    [Google Scholar]
  22. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  23. Kämpfer P., Denner E. B. M., Meyer S., Moore E. R. B., Busse H.-J. 1997; Classification of “ Pseudomonas azotocolligans ” Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47:577–583 [CrossRef]
    [Google Scholar]
  24. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [CrossRef]
    [Google Scholar]
  25. Mechichi T., Fardeau M.-L., Labat M., Garcia J.-L., Verhe F., Patel B. K. C. 2000; Clostridium peptidivorans sp. nov., a peptide-fermenting bacterium from an olive mill wastewater treatment digester. Int J Syst Evol Microbiol 50:1259–1264 [CrossRef]
    [Google Scholar]
  26. Miller L. T. 1982; Single derivatization method for the routine analysis of whole-cell fatty acid methyl esters, including hydroxyl acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  27. Prakash O., Kumari K., Lal R. 2007; Pseudomonas delhiensis sp. nov., from a fly ash dumping site of a thermal power plant. Int J Syst Evol Microbiol 57:527–531 [CrossRef]
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  29. Simmons J. S. 1926; A culture medium for differentiating organisms of typhoid-colon aerogenes groups and for isolating certain fungi. J Infect Dis 39:209–214 [CrossRef]
    [Google Scholar]
  30. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  32. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingomonas , Novosphingobium and Sphingopyxis , on the basis of phylogenetic and chemotaxonomic analysis. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  33. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  34. Tourava T. P., Antonov A. S. 1987; Identification of microorganisms by rapid DNA-DNA hybridization. Methods Microbiol 19:333–355
    [Google Scholar]
  35. Van de Peer Y., De Wachter Y. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  36. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  37. Wittich R.-M., Busse H.-J., Kämpfer P., Macedo A. J., Tiirola M., Wieser M., Abraham W.-R. 2007; Sphingomonas fennica sp. nov. and Sphingomonas haloaromaticamans sp. nov., outliers of the genus Sphingomonas . Int J Syst Evol Microbiol 57:1740–1746 [CrossRef]
    [Google Scholar]
  38. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen.nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov.,Sphingomonas adhaesiva sp. nov., Sphingomonascapsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119 [CrossRef]
    [Google Scholar]
  39. Yabuuchi E., Yamamoto H., Terakubo S., Okamura N., Naka T., Fujiwara N., Kobayashi K., Kosako Y., Hiraishi A. 2001; Proposal of Sphingomonas wittichii sp. nov. for strain RW1T, known as a dibenzo- p -dioxin metabolizer. Int J Syst Evol Microbiol 51:281–292
    [Google Scholar]
  40. Yabuuchi E., Kosaka Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K. 2002; Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium , Novosphingobium and Sphingopyxis , in conjunction with Blastomonas ursincola . Int J Syst Evol Microbiol 52:1485–1496 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.008995-0
Loading
/content/journal/ijsem/10.1099/ijs.0.008995-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error