1887

Abstract

A novel acidophilic, cell-wall-less archaeon, strain V, was isolated from a hydrothermal pool on Vulcano Island, Italy. The morphology of cells was observed to vary from pleomorphic to coccoid. The temperature range for growth of strain V was 15–65 °C with an optimum at 45 °C. The pH for growth ranged from pH 0 to 4 with an optimal at pH 1.4–1.6. Strain V was able to grow aerobically and anaerobically, oxidizing ferrous iron and reducing ferric iron, respectively. The isolate grew chemo-organotrophically with yeast extract and yeast extract with glucose as the sources of energy and carbon. The molar G+C content in the DNA was 36 mol%. 16S rRNA gene sequence analysis demonstrated that strain V was a member of the family , order , phylum , showing sequence identities of 100 % with BH2, 95.4 % with Y, 94 % with DSM 9790 and 92 % with DSM 9789. 16S rRNA gene sequence-based phylogenetic analysis showed that strain V formed a monophyletic cluster together with BH2 and all other thermophilic isolates with available 16S rRNA gene sequences, whereas Y formed another cluster with mesophilic isolates within the family . DNA–DNA hybridization values between strain V and BH2 were well below 70 %, indicating that the two strains belong to separate species. Principal membrane lipids of strain V were dibiphytanyl-based tetraether lipids containing pentacyclic rings. The polar lipids were dominated by a single phosphoglycolipid derivative based on a galactosyl dibiphytanyl phosphoglycerol tetraether, together with smaller amounts of monoglycosyl and diglycosyl dibiphytanyl ether lipids and the corresponding phosphoglycerol derivatives. The major respiratory quinones present were naphthoquinone derivatives. Given the notable physiological and chemical differences as well as the distinct phylogenetic placement of the new isolate relative to the type species of the genus , we propose strain V as a member of a new genus and species, gen. nov.,

sp. nov. The type strain of is strain V (=DSM 18409 =JCM 14615). In addition, we propose to transfer Hawkes 2008 to the genus as comb. nov. (type strain BH2 =DSM 16551 =JCM 13668).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.009639-0
2009-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/11/2815.html?itemId=/content/journal/ijsem/10.1099/ijs.0.009639-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef] [Google Scholar]
  2. Batrakov, S. G., Pivovarova, T. A., Esipov, S. E., Sheichenko, V. I. & Karavaiko, G. I.(2002). Beta-d-glucopyranosyl caldarchaetidylglycerol is the main lipid of the acidophilic, mesophilic, ferrous iron-oxidising archaeon Ferroplasma acidiphilum. Biochim Biophys Acta 1581, 29–35.[CrossRef] [Google Scholar]
  3. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M.(1977). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef] [Google Scholar]
  4. Chaplin, M. F.(1982). A rapid and sensitive method for the analysis of carbohydrate components in glycoproteins using gas-liquid chromatography. Anal Biochem 123, 336–341.[CrossRef] [Google Scholar]
  5. Collins, M. D.(1985). Structure of thermoplasmaquinone from Thermoplasma acidophilum. FEMS Microbiol Lett 28, 21–23.[CrossRef] [Google Scholar]
  6. Darland, G., Brock, T. D., Samsonoff, W. & Conti, S. F.(1970). A thermophilic, acidophilic Mycoplasma isolated from a coal refuse pile. Science 170, 1416–1418.[CrossRef] [Google Scholar]
  7. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  8. Dopson, M., Baker-Austin, C., Hind, A., Bowman, J. P. & Bond, P. L.(2004). Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70, 2079–2088.[CrossRef] [Google Scholar]
  9. Edwards, K. J., Bond, P. L., Gihring, T. M. & Banfield, J. F.(2000). An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287, 1796–1799.[CrossRef] [Google Scholar]
  10. Ferrer, M., Golyshina, O. V., Beloqui, A., Golyshin, P. N. & Timmis, K. N.(2007). The cellular machinery of Ferroplasma acidiphilum is iron-protein-dominated. Nature 445, 91–94.[CrossRef] [Google Scholar]
  11. Golyshina, O. V. & Timmis, K. N.(2005).Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 7, 1277–1288.[CrossRef] [Google Scholar]
  12. Golyshina, O. V., Pivovarova, T. A., Karavaiko, G. I., Kondrat'eva, T. F., Moore, E. R. B., Abraham, W. R., Lünsdorf, H., Timmis, K. N., Yakimov, M. M. & Golyshin, P. N.(2000).Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50, 997–1006.[CrossRef] [Google Scholar]
  13. Hawkes, R. B., Franzmann, P. D., O'Hara, G. & Plumb, J. J.(2006).Ferroplasma cupricumulans sp. nov., a novel moderately thermophilic, acidophilic archaeon isolated from an industrial-scale chalcocite bioleach heap. Extremophiles 10, 525–530.[CrossRef] [Google Scholar]
  14. Hawkes, R. B., Franzmann, P. D., O'Hara, G. & Plumb, J. J.(2008).Ferroplasma cupricumulans sp. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published, Validation List no. 119. Int J Syst Evol Microbiol 58, 1–2.[CrossRef] [Google Scholar]
  15. Huber, H. & Stetter, K. O.(2006). The order Thermoplasmatales. In The Prokaryotes, 3rd edn, vol. 3, pp. 101–112. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer.
  16. Huß, V. A. R., Festl, H. & Schleifer, K. H.(1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef] [Google Scholar]
  17. Itoh, T., Yoshikawa, N. & Takashina, T.(2007).Thermogymnomonas acidicola gen. nov., sp. nov., a novel thermoacidophilic, cell wall-less archaeon in the order Thermoplasmatales, isolated from a solfataric soil in Hakone, Japan. Int J Syst Evol Microbiol 57, 2557–2561.[CrossRef] [Google Scholar]
  18. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  19. Lünsdorf, H., Strömpl, C., Osborn, A. M., Bennasar, A., Moore, E. R. B., Abraham, W.-R. & Timmis, K. N.(2001). Approach to analyze interactions of microorganisms, hydrophobic substrates, and soil colloids leading to formation of composite biofilms, and to study initial events in microbiogeological processes. Methods Enzymol 336, 317–331. [Google Scholar]
  20. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  21. Schleper, C., Puehler, G., Holz, I., Gambacorta, A., Janekovic, D., Santarius, U., Klenk, H. P. & Zillig, W.(1995).Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177, 7050–7059. [Google Scholar]
  22. Schleper, C., Pühler, G., Klenk, H.-P. & Zillig, W.(1996).Picrophilus oshimae and Picrophilus torridus fam. nov., gen. nov., sp. nov., two species of hyperacidophilic, thermophilic, heterotrophic, aerobic archaea. Int J Syst Bacteriol 46, 814–816.[CrossRef] [Google Scholar]
  23. Segerer, A., Langworthy, T. A. & Stetter, K. O.(1988).Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields. Syst Appl Microbiol 10, 161–171.[CrossRef] [Google Scholar]
  24. Shimada, H., Shida, Y. & Nemioto, N.(2001). Quinone profiles of Thermoplasma acidophilum HO-62. J Bacteriol 183, 1462–1465.[CrossRef] [Google Scholar]
  25. Spurr, A. R.(1969). A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26, 31–43.[CrossRef] [Google Scholar]
  26. Swain, M., Brisson, J.-B., Sprott, G. D., Cooper, F. P. & Patel, G. B.(1997). Identification of β-l-gulose as the sugar moiety of the main polar lipid Thermoplasma acidophilum. Biochim Biophys Acta 1345, 56–64.[CrossRef] [Google Scholar]
  27. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  28. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.009639-0
Loading
/content/journal/ijsem/10.1099/ijs.0.009639-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 2815 - 2823

Growth curve of strain V oxidizing iron in medium 9K supplemented with SL-10 trace elements, 0.02 % (v/v) yeast extract and 5 mM tetrathionate. FeSO (heptahydrate, initial concentration in the medium 25 g l 1) was fully converted to the Fe(III) form after 72 h.



IMAGE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error