1887

Abstract

Strains 1.15.5, 2.27.5, 5.24.4 and 6.14.5 were isolated from a solar saltern. They have flattened, rod-shaped cells and are aerobic, extremely halophilic members of the domain and family . Cells stained Gram-negative and grew optimally in media around neutral pH and containing 20–24 % (w/v) (strains 1.15.5 and 2.27.5) or 22–24 % (w/v) (5.24.4 and 6.14.5) salts. Mg was not required. The DNA G+C contents of these isolates were all close to 58 mol%, and DNA–DNA cross-hybridization showed a mean relatedness of 77 %. Their 16S rRNA gene sequences differed by no more than 1.6 % from each other. Phylogenetic tree reconstructions with other recognized members of the indicated that they formed a distinct clade, with the closest relative being (86.6–87.6 % 16S rRNA gene sequence similarity to the type strain). The only major polar lipid of all four isolates was the sulfated diglycosyl diether lipid S-DGD-1. By phase-contrast microscopy, the long, flattened cells of these strains often displayed a ‘wing-like’ shape. The phenotypic and phylogenetic data support the placement of these isolates into a novel species in a new genus within the , for which we propose the name gen. nov., sp. nov. The type strain of is 1.15.5 (=JCM 14355 =CECT 7525 =DSM 18729), with the additional reference strains 2.27.5 (=JCM 14356 =DSM 18671), 5.24.4 (=JCM 14357 =DSM 18673) and 6.14.5 (=JCM 14358 =DSM 18692).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.010017-0
2010-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/5/1196.html?itemId=/content/journal/ijsem/10.1099/ijs.0.010017-0&mimeType=html&fmt=ahah

References

  1. Bowman J. P., McCammon S. A., Rea S. M., McMeekin T. A. 2000; The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiol Lett 183:81–88 [CrossRef]
    [Google Scholar]
  2. Burns D. G., Dyall Smith M. 2006; Cultivation of haloarchaea. Methods Microbiol 35:535–552
    [Google Scholar]
  3. Burns D. G., Camakaris H. M., Janssen P. H., Dyall-Smith M. L. 2004; Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70:5258–5265 [CrossRef]
    [Google Scholar]
  4. Burns D. G., Janssen P. H., Itoh T., Kamekura M., Li Z., Jensen G., Rodríguez-Valera F., Bolhuis H., Dyall-Smith M. L. 2007; Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392 [CrossRef]
    [Google Scholar]
  5. Cui H. L., Lin Z. Y., Dong Y., Zhou P. J., Liu S. J. 2007; Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57:2204–2206 [CrossRef]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  7. Gutierrez M. C., Kamekura M., Holmes M. L., Dyall-Smith M. L., Ventosa A. 2002; Taxonomic characterization of Haloferax sp.(“ H. alicantei ”) strain Aa 2.2: description of Haloferax lucentensis sp. nov. Extremophiles 6:479–483 [CrossRef]
    [Google Scholar]
  8. Kamekura M. 1993; Lipids of extreme halophiles. In The Biology of Halophilic Bacteria pp 135–161 Edited by Vreeland R. H., Hochstein L. I. Boca Raton, FL: CRC Press;
    [Google Scholar]
  9. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  10. Oren A. 2006; The order Halobacteriales . In The Prokaryotes: a Handbook on the Biology of Bacteria , 3rd edn. vol 3 pp 113–164 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  11. Oren A., Ventosa A. 2000; International Committee on Systematic Bacteriology Subcommittee on the taxonomy of Halobacteriaceae . Minutes of the meetings 16 August 1999; Sydney, Australia. Int J Syst Evol Microbiol 50:1405–1407 [CrossRef]
    [Google Scholar]
  12. Oren A., Ventosa A., Grant W. D. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47:233–238 [CrossRef]
    [Google Scholar]
  13. Oren A., Elevi R., Watanabe S., Ihara K., Corcelli A. 2002; Halomicrobium mukohataei gen. nov., comb. nov., and emended description of Halomicrobium mukohataei . Int J Syst Evol Microbiol 52:1831–1835 [CrossRef]
    [Google Scholar]
  14. Tamaoka J. 1994; Determination of DNA base composition. In Chemical Methods in Prokaryotic Systematics pp 463–470 Edited by Goodfellow M., O'Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  15. Torreblanca M., Rodriguez-Valera F., Juez G., Ventosa A., Kamekura M., Kates M. 1986; Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen.nov. and Haloferax gen. nov. Syst Appl Microbiol 8:89–99 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.010017-0
Loading
/content/journal/ijsem/10.1099/ijs.0.010017-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error