1887

Abstract

Two strains of Gram-negative, aerobic, non-pigmented, non-motile, rod-shaped bacteria were isolated from beechwood blocks during decay by the white-rot fungus and were designated strains BW863 and BW872. They are capable of methylotrophic growth and assimilate carbon via the ribulose-bisphosphate pathway. In addition to methanol, the novel isolates utilized ethanol, pyruvate and malate. Strains BW863 and BW872 are obligately acidophilic, mesophilic organisms capable of growth at pH 3.1–6.5 (with an optimum at pH 4.5–5.0) and at 4–30 °C. Phospholipid fatty acid profiles of these bacteria contain unusually large amounts (about 90 %) of C 7, thereby resembling the profiles of strains. The predominant quinone is Q-10. The DNA G+C content of the novel isolates is 61.8–62.8 mol%. On the basis of 16S rRNA gene sequence similarity, strains BW863 and BW872 are most closely related to the acidophilic methanotroph B2 (96.5–97 %). Comparative sequence analysis of , the gene encoding the large subunit of methanol dehydrogenase, placed the MxaF sequences of the two novel strains in a cluster that is distinct from all previously described MxaF sequences of cultivated methylotrophs. The identity between the MxaF sequences of the acidophilic isolates and those from known alpha-, beta- and gammaproteobacterial methylotrophs was respectively 69–75, 61–63 and 64–67 %. The data therefore suggest that strains BW863 and BW872 represent a novel genus and species of methylotrophic bacteria, for which the name gen. nov., sp. nov. is proposed. Strain BW863 (=DSM 19998 =NCIMB 14408) is the type strain of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.010074-0
2009-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/10/2538.html?itemId=/content/journal/ijsem/10.1099/ijs.0.010074-0&mimeType=html&fmt=ahah

References

  1. Ander, P. & Eriksson, K.-E.(1984). Methanol formation during lignin degradation by Phanerochaete chrysosporium. Appl Microbiol Biotechnol 21, 96–102. [Google Scholar]
  2. Becking, J. H.(2006). The genus Beijerinckia. In The Prokaryotes, 3rd edn, vol. 5, pp. 151–162. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer.
  3. Collins, M. D.(1985). Analysis of isoprenoid quinones. Methods Microbiol 18, 329–366. [Google Scholar]
  4. Costello, A. M. & Lidstrom, M. E.(1999). Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65, 5066–5074. [Google Scholar]
  5. Dedysh, S. N., Liesack, W., Khmelenina, V. N., Suzina, N. E., Trotsenko, Y. A., Semrau, J. D., Bares, A. M., Panikov, N. S. & Tiedje, J. M.(2000).Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50, 955–969.[CrossRef] [Google Scholar]
  6. Dedysh, S. N., Khmelenina, V. N., Suzina, N. E., Trotsenko, Y. A., Semrau, J. D., Liesack, W. & Tiedje, J. M.(2002).Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52, 251–261. [Google Scholar]
  7. Dedysh, S. N., Berestovskaya, Y. Y., Vasylieva, L. V., Belova, S. E., Khmelenina, V. N., Suzina, N. E., Trotsenko, Y. A., Liesack, W. & Zavarzin, G. A.(2004a).Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54, 151–156.[CrossRef] [Google Scholar]
  8. Dedysh, S. N., Ricke, P. & Liesack, W.(2004b). NifH and NifD phylogenies: a molecular basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. Microbiology 150, 1301–1313.[CrossRef] [Google Scholar]
  9. Dedysh, S. N., Smirnova, K. V., Chmelenina, V. N., Suzina, N. E., Liesack, W. & Trotsenko, Y. A.(2005a). Methylotrophic autotrophy in Beijerinckia mobilis. J Bacteriol 187, 3884–3888.[CrossRef] [Google Scholar]
  10. Dedysh, S. N., Knief, C. & Dunfield, P.(2005b).Methylocella species are facultatively methanotrophic. J Bacteriol 187, 4665–4670.[CrossRef] [Google Scholar]
  11. Dedysh, S. N., Belova, S. E., Bodelier, P. L. E., Smirnova, K. V., Khmelenina, V. N., Chidthaisong, A., Trotsenko, Y. A., Liesack, W. & Dunfield, P. F.(2007).Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs. Int J Syst Evol Microbiol 57, 472–479.[CrossRef] [Google Scholar]
  12. Dunfield, P. F., Khmelenina, V. N., Suzina, N. E., Trotsenko, Y. A. & Dedysh, S. N.(2003).Methylocella silvestris sp. nov., a novel methanotrophic bacterium isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53, 1231–1239.[CrossRef] [Google Scholar]
  13. Fang, J., Barcelona, M. J. & Semrau, J. D.(2000). Characterization of methanotrophic bacteria on the basis of intact phospholipid profiles. FEMS Microbiol Lett 189, 67–72.[CrossRef] [Google Scholar]
  14. Folman, L. B., Klein Gunnewiek, P. J. A., Boddy, L. & de Boer, W.(2008). Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil. FEMS Microbiol Ecol 63, 181–191.[CrossRef] [Google Scholar]
  15. Holmes, A. J., Costello, A., Lidstrom, M. E. & Murrell, J. C.(1995). Evidence that particulate methane monooxygenase and ammonium monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132, 203–208.[CrossRef] [Google Scholar]
  16. Kates, M.(1972).Techniques of Lipidology. New York: Elsevier.
  17. Kato, Y., Asahara, M., Arai, D., Goto, K. & Yokota, A.(2005). Reclassification of Methylobacterium chloromethanicum and Methylobacterium dichloromethanicum as later subjective synonyms of Methylobacterium extorquens and of Methylobacterium lusitanum as a later subjective synonym of Methylobacterium rhodesianum. J Gen Appl Microbiol 51, 287–299.[CrossRef] [Google Scholar]
  18. Kato, Y., Asahara, M., Goto, K., Kasai, H. & Yokota, A.(2008).Methylobacterium persicinum sp. nov., Methylobacterium komagatae sp. nov., Methylobacterium brachiatum sp. nov., Methylobacterium tardum sp. nov. and Methylobacterium gregans sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 58, 1134–1141.[CrossRef] [Google Scholar]
  19. Kolb, S., Knief, C., Stubner, S. & Conrad, R.(2003). Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl Environ Microbiol 69, 2423–2429.[CrossRef] [Google Scholar]
  20. Lidstrom, M. E.(2006). Aerobic methylotrophic prokaryotes. In The Prokaryotes, 3rd edn, vol. 2, pp. 618–634. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer.
  21. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S., Jobb, G. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  22. McDonald, I. R. & Murrell, J. C.(1997). The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 63, 3218–3224. [Google Scholar]
  23. Owen, R. J., Lapage, S. P. & Hill, L. R.(1969). Determination of base composition from melting profiles in dilute buffers. Biopolymers 7, 503–516.[CrossRef] [Google Scholar]
  24. Radajewski, S., Ineson, P., Parekh, N. R. & Murrell, J. C.(2000). Stable-isotope probing as a tool in microbial ecology. Nature 403, 646–649.[CrossRef] [Google Scholar]
  25. Radajewski, S., Webster, G., Reay, D. S., Morris, S. A., Ineson, P., Nedwell, D. B., Prosser, J. I. & Murrell, J. C.(2002). Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. Microbiology 148, 2331–2342. [Google Scholar]
  26. Reynolds, E. S.(1963). The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17, 208–212.[CrossRef] [Google Scholar]
  27. Spiridonova, E. M., Berg, I. A., Kolganova, T. V., Ivanovsky, R. N., Kuznetsov, B. B. & Tourova, T. P.(2004). An oligonucleotide primer system for amplification of the ribulose-1,5-bisphosphate carboxylase/oxygenase genes of bacteria of various taxonomic groups. Microbiology (English translation of Mikrobiologiia) 73, 316–325. [Google Scholar]
  28. Warneke, C., Karl, T., Judmaier, H., Hansel, A., Jordan, A., Lindinger, W. & Crutzen, P. J.(1999). Acetone, methanol, and other partially oxidized volatile organic emissions from dead plant matter by abiological processes: significance for atmospheric chemistry. J Geophys Res 13, 9–18. [Google Scholar]
  29. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J.(1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.010074-0
Loading
/content/journal/ijsem/10.1099/ijs.0.010074-0
Loading

Data & Media loading...

Supplements

Striking difference in cell morphology between B2 (left) and strain BW863 (right). Bars, 5 µm.

IMAGE

Striking difference in cell morphology between B2 (left) and strain BW863 (right). Bars, 5 µm.

IMAGE

16S rRNA gene-based neighbour-joining tree showing the phylogenetic positions of strains BW863 and BW872 relative to other members of the family and to environmental 16S rRNA gene sequences retrieved by means of the stable-isotope-probing technique from different acidic soils amended with C-methanol. [PDF](45 KB)

PDF

16S rRNA gene-based neighbour-joining tree showing the phylogenetic positions of strains BW863 and BW872 relative to other members of the family and to environmental 16S rRNA gene sequences retrieved by means of the stable-isotope-probing technique from different acidic soils amended with C-methanol. [PDF](45 KB)

IMAGE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error