1887

Abstract

A Gram-stain-positive, rod-shaped, endospore-forming, halophilic, alkalitolerant bacterium, designated halo-1, was isolated from sediment of Xiarinaoer soda lake, located in the Inner Mongolia Autonomous Region of China. Strain halo-1 grew in the presence of 9–30 % (w/v) NaCl (optimum 19 %) and at pH 5–10 (optimum pH 9). The cell-wall peptidoglycan contained -diaminopimelic acid and the major respiratory isoprenoid quinone was MK-7. The predominant cellular fatty acids of the isolate were anteiso-C (58.35 %), anteiso-C (12.89 %) and C (6.52 %). The polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, glycolipid and a phospholipid of unknown structure. The DNA G+C content of the strain was 46.4 mol%. On the basis of 16S rRNA gene sequence similarity, strain halo-1 showed the highest similarity (93.9 %) to CH9d. Strain halo-1 could be clearly differentiated from its closest phylogenetic relative on the basis of several phenotypic, genotypic and chemotaxonomic features. Therefore, strain halo-1 represents a novel species, for which the name sp. nov. is proposed, with the type strain halo-1 (=CGMCC 1.7653 =NBRC 104934).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.010181-0
2010-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/6/1339.html?itemId=/content/journal/ijsem/10.1099/ijs.0.010181-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [CrossRef]
    [Google Scholar]
  3. Brosius J., Palmer J. L., Kennedy J. P., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75:4801–4805 [CrossRef]
    [Google Scholar]
  4. Carrasco I. J., Márquez M. C., Xue Y., Ma Y., Cowan D. A., Jones B. E., Grant W. D., Ventosa A. 2007; Salsuginibacillus kocurii gen. nov., sp. nov., a moderately halophilic bacterium from soda-lake sediment. Int J Syst Evol Microbiol 57:2381–2386 [CrossRef]
    [Google Scholar]
  5. Collins M. D. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  7. Dong X.-Z., Cai M.-Y. (editors) 2001; Determination of biochemical properties. In Manual for the Systematic Identification of General Bacteria pp 370–398 Beijing: Science Press (in Chinese;
    [Google Scholar]
  8. Duckworth A. W., Grant W. D., Jones B. E., van Steenbergen R. 1996; Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19:181–191 [CrossRef]
    [Google Scholar]
  9. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485
    [Google Scholar]
  10. Güssow D., Clackson T. 1989; Direct clone characterization from plaques and colonies by the polymerase chain reaction. Nucleic Acids Res 17:4000 [CrossRef]
    [Google Scholar]
  11. Hasegawa T., Takizawa M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322 [CrossRef]
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism , vol. 3 pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  13. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  14. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  15. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  16. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117 [CrossRef]
    [Google Scholar]
  17. Pan H.-L., Zhou C., Wang H.-L., Xue Y.-F., Ma Y.-H. 2006; Diversity of halophilic archaea in hypersaline lakes of Inner Mongolia, China. Wei Sheng Wu Xue Bao 46:1–6 (in Chinese
    [Google Scholar]
  18. Rzhetsky A., Nei M. 1993; Theoretical foundation of the minimum-evolution methods of phylogenetic inference. Mol Biol Evol 10:1073–1095
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  20. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.010181-0
Loading
/content/journal/ijsem/10.1099/ijs.0.010181-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error