1887

Abstract

Two novel actinomycetes, designated DQS3-9A1 and DQS3-9A2, were isolated from a saline soil contaminated with crude oil in the Shengli Oilfield in China. On the basis of 16S rRNA gene sequence analysis, the two strains were most closely related to species (92.7–94.9 % similarities), and formed a distinct lineage in the suborder . In addition, the major sugars in the cell wall, arabinose and galactose, supported the affiliation of strain DQS3-9A1 with members of the family . However, strain DQS3-9A1 did not contain mycolic acids and MK-8 (85.5 %) was the major menaquinone for both isolates. The major cellular fatty acids for strain DQS3-9A1 were C (20.5 %), 10-methyl C (19.3 %), 10-methyl C (16.1 %), summed feature 3 (11.4 %), C (11.3 %), C (5.0 %) and C 8 (5.0 %). The polar lipids of strain DQS3-9A1 consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphatidylinositol and an unknown glucosamine-containing phospholipid. These chemotaxonomic data indicated that strain DQS3-9A1 differs from the present members of the suborder . Therefore, the creation of gen. nov., sp. nov. is proposed, with DQS3-9A1 (=DSM 45089=CGMCC 4.3532) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.010546-0
2010-03-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/3/638.html?itemId=/content/journal/ijsem/10.1099/ijs.0.010546-0&mimeType=html&fmt=ahah

References

  1. Butler W. R., Floyd M. M., Brown J., Toney S. R., Daneshvar M., Cooksey R. S., Carr J., Steigerwalt A., Charles N. 2005; Novel mycolic acid-containing bacteria in the family Segniliparaceae fam. nov., including the genus Segniliparus gen. nov., with descriptions of Segniliparus rotundus sp.nov. and Segniliparus rugosus sp. nov. Int J Syst Evol Microbiol 55:1615–1624 [CrossRef]
    [Google Scholar]
  2. Chun J., Blackall L. L., Kang S. O., Hah Y. C., Goodfellow M. 1997; A proposal to reclassify Nocardia pinensis Blackall et al. as Skermania piniformis gen. nov., comb. nov. Int J Syst Bacteriol 47:127–131 [CrossRef]
    [Google Scholar]
  3. Collins M. D., Goodfellow M., Minnikin D. E. 1980; Fatty acid isoprenoid quinine and polar lipid composition in the classification of Curtobacterium and related taxa. J Gen Microbiol 118:29–37
    [Google Scholar]
  4. Collins M. D., Burton R. A., Jones D. 1988; Corynebacterium amycolatum sp. nov., a new mycolic acid-less Corynebacterium species from human skin. FEMS Microbiol Lett 49:349–352
    [Google Scholar]
  5. Collins M. D., Falsen E., Akervall E., Sjöden B., Alvarez A. 1998; Corynebacterium kroppenstedtii sp. nov., a novel corynebacterium that does not contain mycolic acids. Int J Syst Bacteriol 48:1449–1454 [CrossRef]
    [Google Scholar]
  6. Collins M. D., Hoyles L., Foster G., Falsen E. 2004; Corynebacterium caspium sp. nov., from a Caspian seal ( Phoca caspica . Int J Syst Evol Microbiol 54:925–928
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  8. Eguchi M., Nishikawa T., Macdonald K. 1996; Responses to stress and nutrient availability by the marine ultramicrobacterium Sphingomonas sp. strain RB2256. Appl Environ Microbiol 62:1287–1294
    [Google Scholar]
  9. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  10. Fernández-Garayzábal J. F., Vela A. I., Egido R., Hutson R. A., Lanzarot M. P., Fernández-García M., Collins M. D. 2004; Corynebacterium ciconiae sp. nov., isolated from the trachea of black storks ( Ciconia nigra . Int J Syst Evol Microbiol 54:2191–2195 [CrossRef]
    [Google Scholar]
  11. Hall V., Collins M. D., Hutson R. A., Lawson P. A., Falsen E., Duerden B. I. 2003; Corynebacterium atypicum sp. nov., from a human clinical source, does not contain corynomycolic acids. Int J Syst Evol Microbiol 53:1065–1068 [CrossRef]
    [Google Scholar]
  12. Huß V. A. R., Festl H., Schleifer K.-H. 1983; Studies on the spectrometric determination of DNA hybridisation from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  13. Kämpfer P., Anderson M. A., Rainey F. A., Kroppenstedt R. M., Salonen S. M. 1999; Williamsia muralis gen. nov., sp. nov. isolated from the indoor environment of a children's day care centre. Int J Syst Bacteriol 49:681–687 [CrossRef]
    [Google Scholar]
  14. Kates M. 1986 Techniques of Lipidology , 2nd edn. Amsterdam: Elsevier;
    [Google Scholar]
  15. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  16. Komagata K., Suzuki K. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–206
    [Google Scholar]
  17. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  18. Li W. L. 2007; Corynebacterineae. In Actinomycete Systematic Principles, Methods and Practice pp 323–358 Edited by Xu L. H., Li W. L., Liu Z. H., Jiang C. L. Beijing: Science Press;
    [Google Scholar]
  19. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  20. Rainey F. A., Klatte S., Kroppenstedt R. M., Stackebrandt E. 1995; Dietzia , a new genus including Dietzia maris comb. nov., formerly Rhodococcus maris . Int J Syst Bacteriol 45:32–36 [CrossRef]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  22. Soddell J. A., Stainsby F. M., Eales K. L., Kroppenstedt R. M., Robert J., Seviour R. J., Goodfellow M. 2006 Millisia brevis gen. nov., sp. nov., an actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol 56, 739–744. [CrossRef]
  23. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491 [CrossRef]
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  25. Wang Y. N., Cai H., Yu S. L., Wang Z. Y., Liu J., Wu X. L. 2007; Halomonas gudaonensis sp. nov., isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 57:911–915
    [Google Scholar]
  26. Wauters G., Driessen A., Ageron E., Janssens M., Grimont P. A. D. 1996; Propionic acid-producing strains previously designated as Corynebacterium xerosis , C. minutissimum , C. striatum , and CDC group I and group F coryneforms belong to the species Corynebacterium amycolatum . Int J Syst Bacteriol 46:653–657
    [Google Scholar]
  27. Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813
    [Google Scholar]
  28. Zumft W. G. 1991; The denitrifying bacteria. In The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Application . , 2nd edn. pp 554–582 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.010546-0
Loading
/content/journal/ijsem/10.1099/ijs.0.010546-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error