1887

Abstract

Three bacterial strains that had been isolated from human blood cultures, MS-1, MS-2 and MS-3, were characterized for their phenotypic and biochemical features, cellular fatty acid profiles, menaquinone profiles and phylogenetic positions based on 16S rRNA gene sequence analysis. 16S rRNA gene sequence analysis showed that the isolates were members of the genus . These isolates were most closely related to JCM 13446, with 95.9 % 16S rRNA gene sequence similarity. The levels of sequence similarity among the three strains were 99.7–100 %. The isolates were obligately anaerobic, non-pigmented, non-spore-forming, non-motile, Gram-negative and rod-shaped. The strains grew on media containing 20 % bile. These strains could be differentiated from by their ability to ferment -arabinose and inabilities to ferment cellobiose, -rhamnose and trehalose or to hydrolyse aesculin. The major menaquinone of the isolates was MK-10. Based on these data, we propose a novel species, sp. nov. The type strain is MS-1 (=JCM 15724 =CCUG 57478).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.010611-0
2009-11-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/11/2843.html?itemId=/content/journal/ijsem/10.1099/ijs.0.010611-0&mimeType=html&fmt=ahah

References

  1. Eggerth, A. H. & Gagnon, B. H.(1933). The bacteroides of human feces. J Bacteriol 25, 389–413. [Google Scholar]
  2. Felsenstein, J.(1985). Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  3. Holdeman, L. V., Cato, E. P. & Moore, W. E. C.(1977).Anaerobe Laboratory Manual, 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University.
  4. Johnson, J. L., Moore, W. E. C. & Moore, L. V. H.(1986).Bacteroides caccae sp. nov., Bacteroides merdae sp. nov., and Bacteroides stercoris sp. nov. isolated from human feces. Int J Syst Bacteriol 36, 499–501.[CrossRef] [Google Scholar]
  5. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  6. Komagata, K. & Suzuki, K.(1987). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207. [Google Scholar]
  7. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E.(1988). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef] [Google Scholar]
  8. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A. & other authors(2007).clustalw and clustalx version 2.0. Bioinformatics 23, 2947–2948.[CrossRef] [Google Scholar]
  9. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  10. Miller, L. T.(1982). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16, 584–586. [Google Scholar]
  11. Saito, H. & Miura, K.(1963). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72, 619–629.[CrossRef] [Google Scholar]
  12. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  13. Sakamoto, M. & Benno, Y.(2006). Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol 56, 1599–1605.[CrossRef] [Google Scholar]
  14. Sakamoto, M., Suzuki, M., Umeda, M., Ishikawa, I. & Benno, Y.(2002). Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52, 841–849.[CrossRef] [Google Scholar]
  15. Sakamoto, M., Huang, Y., Umeda, M., Ishikawa, I. & Benno, Y.(2005).Prevotella multiformis sp. nov., isolated from human subgingival plaque. Int J Syst Evol Microbiol 55, 815–819.[CrossRef] [Google Scholar]
  16. Sakamoto, M., Kitahara, M. & Benno, Y.(2007).Parabacteroides johnsonii sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 57, 293–296.[CrossRef] [Google Scholar]
  17. Shah, H. N.(1992). The genus Bacteroides and related taxa. In The Prokaryotes, 2nd edn, vol. 4, pp. 3593–3607. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  18. Simmon, K. E., Mirrett, S., Reller, L. B. & Petti, C. A.(2008). Genotypic diversity of anaerobic isolates from bloodstream infections. J Clin Microbiol 46, 1596–1601.[CrossRef] [Google Scholar]
  19. Song, Y., Liu, C., Lee, J., Bolanos, M., Vaisanen, M. L. & Finegold, S. M.(2005).Bacteroides goldsteinii sp. nov.” isolated from clinical specimens of human intestinal origin. J Clin Microbiol 43, 4522–4527.[CrossRef] [Google Scholar]
  20. Stackebrandt, E. & Goebel, B. M.(1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef] [Google Scholar]
  21. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.010611-0
Loading
/content/journal/ijsem/10.1099/ijs.0.010611-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error