1887

Abstract

A Gram-negative, non-motile, psychrotolerant bacterium exhibiting high catalase activity, designated strain T-3-2, was isolated from a drain of a fish-processing plant. Its catalase activity was 12 000 U (mg protein), much higher than the activity of the other strains tested. The strain grew at 0–30 °C and in the presence of 0–12 % NaCl. The predominant isoprenoid quinone was ubiquinone-8 (Q-8), and C 9 and C 9 were the predominant cellular fatty acids. The DNA G+C content of strain T-3-2 was 43.9 mol%. 16S rRNA gene sequence phylogeny suggested that strain T-3-2 is a member of the genus , with the closest relatives being the type strains of (99.2 % similarity), (98.7 %) and (98.5 %). DNA–DNA hybridization showed less than 65 % relatedness with these strains. A phylogenetic tree based on gene sequences was more reliable, with higher bootstrap values than the 16S rRNA gene sequence-based tree. The result also differentiated the isolate from previously reported species. Owing to the significant differences in phenotypic and chemotaxonomic characteristics and the phylogenetic and DNA–DNA relatedness data, the isolate merits classification within a novel species, for which the name sp. nov. is proposed. The type strain is T-3-2 (=JCM 15603 =NCIMB 14510).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.010959-0
2010-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/1/205.html?itemId=/content/journal/ijsem/10.1099/ijs.0.010959-0&mimeType=html&fmt=ahah

References

  1. Bakermans C., Ayala-del-Río H. L., Ponder M. A., Vishnivetskaya T., Gilichinsky D., Thomashow M. F., Tiedje J. M. 2006 Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int J Syst Evol Microbiol 56, 1285–1291 [CrossRef]
  2. Barrow G. I., Feltham R. K. A. (editors) 1993 Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  3. Bozal N., Montes J., Tudela E., Guinea J. 2003; Characterization of several Psychrobacter strains isolated from Antarctic environments and description of Psychrobacter luti sp.nov. and Psychrobacter fozii sp. nov. Int J Syst Evol Microbiol 53:1093–1100 [CrossRef]
    [Google Scholar]
  4. Denner E. B. M., Mark B., Busse H.-J., Turkiewicz M., Lubits W. 2001; Psychrobacter proteolyticus sp. nov., a psychrotrophic, halotolerant bacterium isolated from the Antarctic krill Euphausia superba Dana, excreting a cold-adapted metalloprotease. Syst Appl Microbiol 24:44–53 [CrossRef]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Gerday C., Glansdorff N. (editors) 2007 Physiology and Biochemistry of Extremophiles Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Heuchert A., Glöckner F. O., Amann R., Fischer U. 2004; Psychrobacter nivimaris sp. nov., a heterotrophic bacterium attached to organic particles isolated from the South Atlantic (Antarctica). Syst Appl Microbiol 27:399–406 [CrossRef]
    [Google Scholar]
  8. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J Bacteriol 66:24–26
    [Google Scholar]
  9. Jamet A., Sigaud S., Van de Sype G., Puppo A., Hérouart D. 2003; Expression of the bacterial catalase genes during Sinorhizobium meliloti Medicago sativa symbiosis and their crucial role during the infection process. Mol Plant Microbe Interact 16:217–225 [CrossRef]
    [Google Scholar]
  10. Katsuwon J., Anderson A. J. 1992; Characterization of catalase activities in a root-colonizing isolate of Pseudomonas putida . Can J Microbiol 38:1026–1032 [CrossRef]
    [Google Scholar]
  11. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  12. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  13. Maruyama A., Honda D., Yamamoto H., Kitamura K., Higashihara T. 2000; Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. Int J Syst Evol Microbiol 50:835–846 [CrossRef]
    [Google Scholar]
  14. Merle P.-L., Sabourault C., Richier S., Allemand D., Furla P. 2007; Catalase characterization and implication in bleaching of a symbiotic sea anemone. Free Radic Biol Med 42:236–246 [CrossRef]
    [Google Scholar]
  15. Rocha E. R., Selby T., Coleman J. P., Smith C. J. 1996; Oxidative stress response in an anaerobe, Bacteroides fragilis : a role for catalase in protection against hydrogen peroxide. J Bacteriol 178:6895–6903
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  18. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetic analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  19. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  20. Visick K. L., Ruby E. G. 1998; The periplasmic, group III catalase of Vibrio fischeri is required for normal symbiotic competence and is induced both by oxidative stress and by approach to stationary phase. J Bacteriol 180:2087–2092
    [Google Scholar]
  21. Yoon J.-H., Lee C.-H., Yeo S.-H., Oh T.-K. 2005; Psychrobacter aquimaris sp. nov. and Psychrobacter namhaensis sp. nov., isolated from sea water of the South Sea in Korea. Int J Syst Evol Microbiol 55:1007–1013 [CrossRef]
    [Google Scholar]
  22. Yumoto I., Yamazaki K., Hishinuma M., Nodasaka Y., Suemori A., Nakajima K., Inoue N., Kawasaki K. 2001; Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51:349–355
    [Google Scholar]
  23. Yumoto I., Hishinuma-Narisawa M., Hirota K., Shingyo T., Takebe F., Nodasaka Y., Matsuyama H., Hara I. 2004; Exiguobacterium oxidotolerans sp. nov., a novel alkaliphile exhibiting high catalase activity. Int J Syst Evol Microbiol 54:2013–2017 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.010959-0
Loading
/content/journal/ijsem/10.1099/ijs.0.010959-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error