1887

Abstract

An aluminium-tolerant bacterium, strain AL46, was isolated from a waterweed, , grown in a highly acidic swamp (pH 3) at an actual acid sulfate soil area of Vietnam. Cells were Gram-negative, aerobic, non-spore-forming, non-motile rods (0.3 μm wide and 1.2–1.6 μm long). 16S rRNA gene sequence analysis indicated that strain AL46 belongs to the genus , class . Strain AL46 was related most closely to the type strains of and (99.4 and 97.8 % 16S rRNA gene sequence similarity, respectively). Levels of DNA–DNA relatedness between strain AL46 and the above type strains were 40 %. The results of physiological and biochemical tests allowed the novel strain to be differentiated phenotypically from the two recognized species. Data for predominant cellular fatty acids (cyclopropyl C and C), major isoprenoid quinone (Q-10) and DNA G+C content (65.6 mol%) were in accordance with those reported for the genus . Therefore, strain AL46 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is AL46 (=NBRC 104303 =VTCC-D9-1).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.011569-0
2010-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/4/764.html?itemId=/content/journal/ijsem/10.1099/ijs.0.011569-0&mimeType=html&fmt=ahah

References

  1. Aizawa T., Nguyen B. V., Kimoto K., Iwabuchi N., Sumida H., Hasegawa I., Sasaki S., Tamura T., Kudo T. other authors 2007; Curtobacterium ammoniigenes sp. nov., an ammonia-producing bacterium isolated from plants inhabiting acidic swamps in actual acid sulfate soil areas of Vietnam. Int J Syst Evol Microbiol 57:1447–1452 [CrossRef]
    [Google Scholar]
  2. Aizawa T., Nguyen B. V., Vijarnsorn P., Kimoto K., Sasaki S., Nakajima M., Sunairi M. 2008; Application of symbiotic bacteria isolated from plants adapted to actual acid sulfate soil. In Development of New Bioremediation Systems of Acid Sulfate Soil for Agriculture and Forestry pp 57–62 Edited by Sasaki S. and others Kyoto: Shoukadoh;
    [Google Scholar]
  3. Bogan B. W., Sullivan W. R., Kayser K. J., Derr K. D., Aldrich H. C., Paterek J. R. 2003; Alkanindiges illinoisensis gen. nov., sp. nov., an obligately hydrocarbonoclastic, aerobic squalane-degrading bacterium isolated from oilfield soils. Int J Syst Evol Microbiol 53:1389–1395 [CrossRef]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Takeuchi N., Yamamoto H., Liu S. L., Miura H., Matsui K., Yabuuchi E. 1988; Simple genetic method to identify viridans group streptococci by colorimetric dot hybridization and fluorometric hybridization in microdilution wells. J Clin Microbiol 26:1708–1713
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  7. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism , vol. 3 pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  8. Kishimoto N., Kosako Y., Tano T. 1993; Acidiphilium aminolytica sp. nov.: an acidophilic chemoorganotrophic bacterium isolated from acidic mineral environment. Curr Microbiol 27:131–136 [CrossRef]
    [Google Scholar]
  9. Kishimoto N., Kosako Y., Wakao N., Tano T., Hiraishi A. 1995; Transfer of Acidiphilium facilis and Acidiphilium aminolytica to the genus Acidocella gen. nov., and emendation of the genus Acidiphilium . Syst Appl Microbiol 18:85–91 [CrossRef]
    [Google Scholar]
  10. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  11. Ryu E. 1938; On the Gram-differentiation of bacteria by the simplest method. J Jpn Soc Vet Sci 17:31
    [Google Scholar]
  12. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  13. Sasaki S., Ishii R., Hasegawa I., Tokuyama T., Hanzawa K., Sumida H., Ueda S., Noguchi A., Matsumoto R. other editors 2008 Development of New Bioremediation Systems of Acid Sulfate Soil for Agriculture and Forestry Kyoto: Shoukadoh;
    [Google Scholar]
  14. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology . pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  15. Stackebrandt E., Goebel B. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  16. Tamura T., Hatano K. 2001; Phylogenetic analysis of the genus Actinoplanes and transfer of Actinoplanes minutisporangius Ruan et al. 1986 and ‘ Actinoplanes aurantiacus ’ to Cryptosporangium minutisporangium comb.nov. and Cryptosporangium aurantiacum sp. nov. Int J Syst Evol Microbiol 51:2119–2125 [CrossRef]
    [Google Scholar]
  17. Tamura T., Nakagaito Y., Nishii T., Hasegawa T., Stackebrandt E., Yokota A. 1994; A new genus of the order Actinomycetales , Couchioplanes gen. nov., with descriptions of Couchioplanes caeruleus (Horan and Brodsky 1986) comb.nov. and Couchioplanescaeruleus subsp. azureus subsp. nov. Int J Syst Bacteriol 44:193–203 [CrossRef]
    [Google Scholar]
  18. Tamura T., Hayakawa M., Hatano K. 1999; Sporichthya brevicatena sp. nov. Int J Syst Bacteriol 49:1779–1784 [CrossRef]
    [Google Scholar]
  19. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  21. Wakao N., Nagasawa N., Matsuura T., Matsukura H., Matsumoto T., Hiraishi A., Sakurai Y., Shiota H. 1994; Acidiphilium multivorum sp. nov., an acidophilic chemoorganotrophic bacterium from pyritic acid mine drainage. J Gen Appl Microbiol 40:143–159 [CrossRef]
    [Google Scholar]
  22. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  23. Wichlacz P. L., Unz R. F., Langworthy T. A. 1986; Acidiphilium angustum sp. nov., Acidiphilium facilis sp. nov., and Acidiphilium rubrum sp. nov.: acidophilic heterotrophic bacteria isolated from acidic coal mine drainage. Int J Syst Bacteriol 36:197–201 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.011569-0
Loading
/content/journal/ijsem/10.1099/ijs.0.011569-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error