1887

Abstract

A moderately thermophilic chemoheterotrophic bacterium, strain Mat9-16, was isolated from microbial mats developed in hot spring water streams from Yumata, Nagano, Japan. Cells of strain Mat9-16 were strictly anaerobic, Gram-stain-negative, non-sporulating, non-motile and short to long rods (2.0–15.5 μm in length). Strain Mat9-16 grew fermentatively with optimum growth at 45 °C, pH 7.0–7.5 and 1 % NaCl (w/v). Phylogenetic analysis based on the 16S rRNA gene revealed that strain Mat9-16 was affiliated with an uncultivated lineage, and the nearest cultivated neighbours were green sulfur bacteria belonging to the class with 77–83 % sequence similarity. However, strain Mat9-16 could not grow phototrophically and did not possess light-harvesting structures, morphologically and genetically, such as the chlorosomes of green sulfur bacteria. On the basis of phenotypic features and phylogenetic position, a novel genus and species are proposed for strain Mat9-16, to be named gen. nov., sp. nov. (=NBRC 101810 =DSM 19864). We also propose to place the cultivated bacterial lineage accommodating the sole representative Mat9-16 in a novel class, classis nov. In addition, we present a formal description of the phylum-level taxon as phyl. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.012484-0
2010-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/6/1376.html?itemId=/content/journal/ijsem/10.1099/ijs.0.012484-0&mimeType=html&fmt=ahah

References

  1. Abulencia C. B., Wyborski D. L., Garcia J. A., Podar M., Chen W., Chang S. H., Chang H. W., Watson D., Brodie E. L. other authors 2006; Environmental whole-genome amplification to access microbial populations in contaminated sediments. Appl Environ Microbiol 72:3291–3301 [CrossRef]
    [Google Scholar]
  2. Adachi J., Hasegawa M. 1995; Improved dating of the human chimpanzee separation in the mitochondrial-DNA tree: heterogeneity among amino-acid sites. J Mol Evol 40:622–628 [CrossRef]
    [Google Scholar]
  3. Alexander B., Andersen J. H., Cox R. P., Imhoff J. F. 2002; Phylogeny of green sulfur bacteria on the basis of gene sequences of 16S rRNA and of the Fenna-Matthews-Olson protein. Arch Microbiol 178:131–140 [CrossRef]
    [Google Scholar]
  4. Amann R. I., Ludwig W., Schleifer K. H. 1995; Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169
    [Google Scholar]
  5. Ashelford K. E., Chuzhanova N. A., Fry J. C., Jones A. J., Weightman A. J. 2006; New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72:5734–5741 [CrossRef]
    [Google Scholar]
  6. Barns S. M., Fundyga R. E., Jeffries M. W., Pace N. R. 1994; Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci U S A 91:1609–1613 [CrossRef]
    [Google Scholar]
  7. Campbell B. J., Stein J. L., Cary S. C. 2003; Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana , a hydrothermal vent polychaete. Appl Environ Microbiol 69:5070–5078 [CrossRef]
    [Google Scholar]
  8. Cavalier-Smith T. 2002; The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52:7–76
    [Google Scholar]
  9. Dojka M. A., Harris J. K., Pace N. R. 2000; Expanding the known diversity and environmental distribution of an uncultured phylogenetic division of bacteria. Appl Environ Microbiol 66:1617–1621 [CrossRef]
    [Google Scholar]
  10. Elshahed M. S., Senko J. M., Najar F. Z., Kenton S. M., Roe B. A., Dewers T. A., Spear J. R., Krumholz L. R. 2003; Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl Environ Microbiol 69:5609–5621 [CrossRef]
    [Google Scholar]
  11. Figueras J. B., Cox R. P., Højrup P., Permentier H. P., Miller M. 2002; Phylogeny of the PscB reaction center protein from green sulfur bacteria. Photosynth Res 71:155–164 [CrossRef]
    [Google Scholar]
  12. Garcia-Gil L. J., Gich F. B., Fuentes-Garcia X. 2003; A comparative study of bchG from green photosynthetic bacteria. Arch Microbiol 179:108–115
    [Google Scholar]
  13. Garrity G. M., Holt J. G. 2001; Phylum BXI. Chlorobi phy. nov. In Bergey’s Manual of Systematic Bacteriology , 2nd edn. vol 1 p 601–623 Edited by Boone D. R., Castenholz R. W. New York: Springer;
    [Google Scholar]
  14. Hanada S., Takaichi S., Matsuura K., Nakamura K. 2002; Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193
    [Google Scholar]
  15. Hasegawa M., Kishino H., Yano T. A. 1985; Dating of the human ape splitting by a molecular clock of mitochondrial-DNA. J Mol Evol 22:160–174 [CrossRef]
    [Google Scholar]
  16. Hiraishi A., Umezawa T., Yamamoto H., Kato K., Maki Y. 1999; Changes in quinone profiles of hot spring microbial mats with a thermal gradient. Appl Environ Microbiol 65:198–205
    [Google Scholar]
  17. Hiraishi A., Kaiya S., Miyakoda H., Futamata H. 2005; Biotransformation of polychlorinated dioxins and microbial community dynamics in sediment microcosms at different contamination levels. Microbes Environ 20:227–242 [CrossRef]
    [Google Scholar]
  18. Huelsenbeck J. P., Ronquist F. 2001; mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755 [CrossRef]
    [Google Scholar]
  19. Hugenholtz P. 2002; Exploring prokaryotic diversity in the genomic era. Genome Biol 3:REVIEWS0003
    [Google Scholar]
  20. Hugenholtz P., Pitulle C., Hershberger K. L., Pace N. R. 1998; Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376
    [Google Scholar]
  21. Iino T., Mori K., Tanaka K., Suzuki K., Harayama S. 2007; Oscillibacter valericigenes gen. nov., sp. nov., a valerate-producing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam. Int J Syst Evol Microbiol 57:1840–1845 [CrossRef]
    [Google Scholar]
  22. Iino T., Nakagawa K., Mori K., Harayama S., Suzuki K. 2008; Calditerrivibrio nitroreducens gen. nov., sp. nov., a thermophilic, nitrate-reducing bacterium isolated from a hot spring in Japan. Int J Syst Evol Microbiol 58:1675–1679 [CrossRef]
    [Google Scholar]
  23. Iino T., Suzuki K., Harayama S. 2009; Lacticigenium naphtae gen. nov., sp. nov., a novel halotolerant and motile lactic acid bacterium isolated from crude oil. Int J Syst Evol Microbiol 59:775–780 [CrossRef]
    [Google Scholar]
  24. Itoh T., Suzuki K., Nakase T. 2002; Vulcanisaeta distributa gen. nov., sp. nov., and Vulucanisaeta souniana sp. nov., novel hyperthermophilic, rod-shaped crenarchaeotes isolated from hot springs in Japan. Int J Syst Evol Microbiol 52:1097–1104 [CrossRef]
    [Google Scholar]
  25. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  26. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  27. Mori K., Kim H., Kakegawa T., Hanada S. 2003; A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam.nov. Thermodesulfobium narugense , gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles 7:283–290 [CrossRef]
    [Google Scholar]
  28. Mori K., Sunamura M., Yanagawa K., Ishibashi J., Miyoshi Y., Iino T., Suzuki K., Urabe T. 2008; First cultivation and ecological investigation of a bacterium affiliated with the candidate phylum OP5 from hot springs. Appl Environ Microbiol 74:6223–6229 [CrossRef]
    [Google Scholar]
  29. Nakagawa T., Fukui M. 2002; Phylogenetic characterization of microbial mats and streamers from a Japanese alkaline hot spring with a thermal gradient. J Gen Appl Microbiol 48:211–222 [CrossRef]
    [Google Scholar]
  30. Nakagawa T., Fukui M. 2003; Molecular characterization of community structures and sulfur metabolism within microbial streamers in Japanese hot springs. Appl Environ Microbiol 69:7044–7057 [CrossRef]
    [Google Scholar]
  31. Olsen G. J., Lane D. J., Giovannoni S. J., Pace N. R., Stahl D. A. 1986; Microbial ecology and evolution; a ribosomal RNA approach. Annu Rev Microbiol 40:337–365 [CrossRef]
    [Google Scholar]
  32. Pace N. R., Stahl D. A., Lane D. J., Olsen G. J. 1986; The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microb Ecol 9:1–55
    [Google Scholar]
  33. Ronquist F., Huelsenbeck J. P. 2003; MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574 [CrossRef]
    [Google Scholar]
  34. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  35. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  36. Sekiguchi Y., Yamada T., Hanada S., Ohashi A., Harada H., Kamagata Y. 2003; Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov.,novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. Int J Syst Evol Microbiol 53:1843–1851 [CrossRef]
    [Google Scholar]
  37. Swofford D. L. 1998 Phylogenetic analysis using parsimony (paup), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  38. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  39. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  40. Ward D. M., Weller R., Bateson M. M. 1990; 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65 [CrossRef]
    [Google Scholar]
  41. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886
    [Google Scholar]
  42. Yamamoto H., Hiraishi A., Kato K., Chiura H. X., Maki Y., Shimizu A. 1998; Phylogenetic evidence for the existence of novel thermophilic bacteria in hot spring sulfur-turf microbial mats in Japan. Appl Environ Microbiol 64:1680–1687
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.012484-0
Loading
/content/journal/ijsem/10.1099/ijs.0.012484-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error