1887

Abstract

A novel facultatively anaerobic strain, designated GPTSA 19, was isolated from a warm spring and characterized using a polyphasic approach. The strain behaved as Gram-negative in the Gram staining procedure but showed a Gram-positive reaction in the aminopeptidase test. The novel strain was a mesophilic rod with ellipsoidal endospores. On the basis of 16S rRNA gene sequence analysis, the strain showed closest similarity (96.0 %) with MC10. The gene sequence similarity of the novel strain with other species of the genus was <95.8 %. The novel strain also had PAEN 515F and 682F signature sequence stretches in the 16S rRNA gene that are usually found in most species of the genus . The strain possessed anteiso-C as the major fatty acid and MK-7 as the predominant menaquinone. Polar lipids included diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), six unknown phospholipids (PLs), one aminophospholipid (PN), three glycolipids (GLs), two aminolipids (ALs), one aminophosphoglycolipid (APGL) and three unknown lipids (ULs). The polar lipid profile of the novel strain, especially as regards ALs, GLs and PLs, distinguished it from the recognized type species of the genus , , as well as from its closest relative . Based on phenotypic and chemotaxonomic characteristics and analysis of the 16S rRNA gene sequence, the new strain merits the rank of a novel genus for which the name gen. nov. is proposed. The type species of the new genus is gen. nov., sp. nov. with the type strain GPTSA 19 (=MTCC 7155=DSM 17643).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.012633-0
2010-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/2/422.html?itemId=/content/journal/ijsem/10.1099/ijs.0.012633-0&mimeType=html&fmt=ahah

References

  1. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 64:253–260
    [Google Scholar]
  2. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [CrossRef]
    [Google Scholar]
  3. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872. In Bergey's Manual of Systematic Bacteriology vol 2 pp 1105–1140 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. Counsell T. J., Murray R. G. E. 1986; Polar lipid profiles of the genus Deinococcus. Int. J Syst Bacteriol 36:202–206 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  6. Horn M. A., Ihssen J., Matthies C., Schramm A., Acker G., Drake H. L. 2005; Dechloromonas dentrificans sp. nov., Flavobacterium dentrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MN72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa . Int J Syst Evol Microbiol 55:1255–1265 [CrossRef]
    [Google Scholar]
  7. Iida K.-I., Ueda Y., Kawamura Y., Ezaki T., Takade A., Yoshida S.-I., Amako K. 2005; Paenibacillus motobuensis sp. nov., isolated from a composting machine utilizing soil from Motobu-town, Okinawa, Japan. Int J Syst Evol Microbiol 55:1811–1816 [CrossRef]
    [Google Scholar]
  8. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology . pp 656–682 Edited by Gerhard P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  9. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H. G., Tindall B. J. 2006 Cohnella thermotolerans gen. nov., sp. nov. and classification of ‘ Paenibacillus hongkongensis ’ as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 56781–786 [CrossRef]
  10. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  11. Logan N. A., De Clerck E., Lebbe L., Verhelst A., Goris J., Forsyth G., Rodríguez-Díaz M., Heyndrickx M., De Vos P. 2004; Paenibacillus cineris sp. nov. and Paenibacillus cookii sp. nov. from Antarctic volcanic soils and a gelatin processing plant. Int J Syst Evol Microbiol 54:1071–1076 [CrossRef]
    [Google Scholar]
  12. Meehan C., Bjourson A., McMullan G. 2001; Paenibacillus azoreducens sp. nov., a synthetic azo dye decolorizing bacterium from industrial waste water. Int J Syst Evol Microbiol 51:1681–1685 [CrossRef]
    [Google Scholar]
  13. Montes M. J., Mercade E., Bozal N., Guinea J. 2004; Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 54:1521–1526 [CrossRef]
    [Google Scholar]
  14. Murray R. G. E., Doetsch R. N., Robinow F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology . pp 21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  15. Pandey K. K., Mayilraj S., Chakrabarti T. 2002; Pseudomonas indica sp. nov., a novel butane-utilizing species. Int J Syst Evol Microbiol 52:1559–1567 [CrossRef]
    [Google Scholar]
  16. Pettersson B., Rippere K. E., Yousten A. A., Priest F. G. 1999; Transfer of Bacillus lentimorbus and Bacillus popilliae to the genus Paenibacillus with emended description of Paenibacillus lentimorbus sp. nov. and Paenibacillus popilliae comb. nov. Int J Syst Bacteriol 49:531–540 [CrossRef]
    [Google Scholar]
  17. Powers E. M. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reaction of food-borne and waterborne bacteria and yeast. Appl Environ Microbiol 61:3756–3758
    [Google Scholar]
  18. Rivas R., Gutiérrez C., Abril A., Mateos P. F., Martínez-Molina E., Ventosa A., Velázquez E. 2005; Paenibacillus rhizosphaerae sp. nov., isolated from the rhizosphere cicerarietinum . Int J Syst Evol Microbiol 55:1305–1309 [CrossRef]
    [Google Scholar]
  19. Saha P., Krishnamurthi S., Mayilraj S., Prasad G. S., Bora T. C., Chakrabarti T. 2005a Aquimonas voraii gen. nov., sp. nov., a novel gammaproteobacterium isolated from a warm spring of Assam, India Int J Syst Evol Microbiol 55:1491–1495 [CrossRef]
    [Google Scholar]
  20. Saha P., Mondal A. K., Mayilraj S., Krishnamurthi S., Bhattacharya A., Chakrabarti T. 2005b; Paenibacillus assamensis sp. nov., a novel bacterium isolated from a warm spring in Assam, India. Int J Syst Evol Microbiol 55:2577–2581 [CrossRef]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  22. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997; Transfer of Bacillus alginolyticus , Bacillus chondroitinus , Bacillus curdlanolyticus , Bacillus glucanolyticus , Bacillus kobensis and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 47:289–298 [CrossRef]
    [Google Scholar]
  23. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology . pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  24. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  25. Takeda M., Suzuki I., Koizumi J. 2005; Paenibacillus hodogayensis sp. nov., capable of degrading the polysaccharide produced by Sphaerotilus natans . Int J Syst Evol Microbiol 55:737–741 [CrossRef]
    [Google Scholar]
  26. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tool. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  27. Van de Peer Y., De Wachter R. 1997; Construction of evolutionary distance trees with treecon for Windows: accounting for variation in nucleotide substitution rate among sites. Comput Appl Biosci 13:227–230
    [Google Scholar]
  28. Velázquez E., de Miguel T., Poza M., Rivas R., Rossselló-Mora R., Villa G. T. 2004; Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces. Int J Syst Evol Microbiol 54:59–64 [CrossRef]
    [Google Scholar]
  29. Yoon J.-H., Yim D. K., Lee J.-S., Shin K.-S., Sato H. H., Lee S. T., Park Y. K., Park Y.-H. 1998; Paenibacillus campinasensis sp. nov., a cyclodextrin-producing bacterium isolated in Brazil. Int J Syst Bacteriol 48:833–837 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.012633-0
Loading
/content/journal/ijsem/10.1099/ijs.0.012633-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error