1887

Abstract

A facultatively chemolithoautotrophic, thiosulfate-oxidizing, Gram-negative, aerobic, motile, rod-shaped bacterial strain, designated ATSB16, was isolated from rhizosphere soils of sesame ( L.). 16S rRNA gene sequence analysis demonstrated that this strain was closely related to LMG 18087 (96.7 % similarity), LMG 18016 (96.5 %), LMG 16407 (96.2 %), LMG 18379 (96.1 %) and LMG 18819 (96.0 %). Strain ATSB16 shared 96.0–96.4 % sequence similarity with four unnamed genomospecies of . The major cellular fatty acids of the strain ATSB16 were C cyclo (33.0 %) and C (30.6 %). Q-8 was the predominant respiratory quinone. The major polar lipids were phosphatidylmethylethanolamine, diphosphatidylglycerol, phosphatidylethanolamine and two unidentified aminophospholipids. Hydroxyputrescine and putrescine were the predominant polyamines. The genomic DNA G+C content of the strain was 64.0 mol%. On the basis of the results obtained from this study, strain ATSB16 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is ATSB16 (=KACC 12757 =LMG 24779).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.012823-0
2010-01-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/1/21.html?itemId=/content/journal/ijsem/10.1099/ijs.0.012823-0&mimeType=html&fmt=ahah

References

  1. Anandham R., Indira Gandhi P., Kim K. A., Yim W. J., Madhaiyan M., Saravanan V. S., Chung J. B., Sa T. M. 2007; Thiosulfate oxidation and mixotrophic growth of Methylobacterium oryzae . Can J Microbiol 53:869–876 [CrossRef]
    [Google Scholar]
  2. Anandham R., Indira Gandhi P., Madhaiyan M., Sa T. M. 2008a; Potential plant growth promoting traits and bioacidulation of rock phosphate by thiosulfate oxidizing bacteria isolated from crop plants. J Basic Microbiol 48:439–447 [CrossRef]
    [Google Scholar]
  3. Anandham R., Indira Gandhi P., Madhaiyan M., Ryu H. Y., Jee H. J., Sa T. M. 2008b; Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene ( soxB ) in rhizobacteria isolated from crop plants. Res Microbiol 159:579–589 [CrossRef]
    [Google Scholar]
  4. Busse H. J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns . Int J Syst Bacteriol 47:698–708 [CrossRef]
    [Google Scholar]
  5. Coenye T., Falsen E., Hoste B., Ohlén M., Goris J., Govan J. R. W., Gillis M., Vandamme P. 2000; Description of Pandoraea gen.nov. with Pandoraea apista sp. nov., Pandoraeapulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp.nov. and Pandoraea norimbergensis comb. nov. Int J Syst Evol Microbiol 50:887–899 [CrossRef]
    [Google Scholar]
  6. Daneshvar M. I., Hollis D. G., Steigerwalt A. G., Whitney A. M., Spangler L., Douglas M. P., Jordan J. G., MacGregor J. P., Hill B. C. other authors 2001; Assignment of CDC weak oxidizer group 2 (WO-2) to the genus Pandoraea and characterization of three new Pandoraea genomospecies. J Clin Microbiol 39:1819–1826 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  9. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  10. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov. a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef]
    [Google Scholar]
  12. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  14. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  15. Mukhopadhyaya P. N., Deb C., Lahiri C., Roy P. 2000; A soxA gene encoding a diheme cytochrome c and a sox locus, essential for sulfur oxidation in a new sulfur lithotrophic bacterium. J Bacteriol 182:4278–4287 [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.012823-0
Loading
/content/journal/ijsem/10.1099/ijs.0.012823-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error