1887

Abstract

A novel, extremely halophilic archaeon, D43, was isolated from traditional salt-fermented seafood in Korea. The cells were Gram-negative-staining and motile. The strain grew at 15–50 °C, 10–30 % (w/v) NaCl and pH 6.0–8.0. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain D43 is affiliated with the family in the domain and had 95.5 % 16S rRNA gene sequence similarity with DX253. The sequence from strain D43 formed a clade with those from regardless of which tree-generating algorithm was used. DNA–DNA hybridization experiments showed 25.8 % relatedness between the isolate and KCTC 4006. Major lipids were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and two unidentified glycolipids. The DNA G+C content of the isolate was 56.5 mol%. On the basis of this polyphasic taxonomic study, strain D43 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is D43 (=DSM 19505 =JCM 15962).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.013037-0
2010-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/5/1187.html?itemId=/content/journal/ijsem/10.1099/ijs.0.013037-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Bauer A. W., Kirby W. M., Sherris J. C., Turck M. 1966; Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496
    [Google Scholar]
  3. Dittmer J. C., Lester R. L. 1964; A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 15:126–127
    [Google Scholar]
  4. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 2005 phylip (phylogeny inference package), version 3.6 Distributed by the author University of Washington; Seattle, USA:
    [Google Scholar]
  8. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773 [CrossRef]
    [Google Scholar]
  10. Gutierrez C., Gonzalez C. 1972; Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 24:516–517
    [Google Scholar]
  11. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  12. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  13. Oren A., Duker S., Ritter S. 1996; The polar lipid composition of Walsby's square bacterium. FEMS Microbiol Lett 138:135–140 [CrossRef]
    [Google Scholar]
  14. Oren A., Ventosa A., Grant W. D. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47:233–238 [CrossRef]
    [Google Scholar]
  15. Purdy K. J., Cresswell-Maynard T. D., Nedwell D. B., McGenity T. J., Grant W. D., Timmis K. N., Embley T. M. 2004; Isolation of haloarchaea that grow at low salinities. Environ Microbiol 6:591–595 [CrossRef]
    [Google Scholar]
  16. Roh S. W., Bae J. W. 2009; Halorubrum cibi sp. nov., an extremely halophilic archaeon from salt-fermented seafood. J Microbiol 47:162–166 [CrossRef]
    [Google Scholar]
  17. Roh S. W., Nam Y.-D., Chang H.-W., Kim K.-H., Lee H.-J., Oh H.-M., Bae J.-W. 2007a; Natronococcus jeotgali sp. nov., a halophilic archaeon isolated from shrimp jeotgal, a traditional fermented seafood from Korea. Int J Syst Evol Microbiol 57:2129–2131 [CrossRef]
    [Google Scholar]
  18. Roh S. W., Nam Y. D., Chang H. W., Sung Y., Kim K. H., Oh H. M., Bae J. W. 2007b; Halalkalicoccus jeotgali sp. nov., a halophilic archaeon from shrimp jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 57:2296–2298 [CrossRef]
    [Google Scholar]
  19. Roh S. W., Sung Y., Nam Y. D., Chang H. W., Kim K. H., Yoon J. H., Jeon C. O., Oh H. M., Bae J. W. 2008; Arthrobacter soli sp. nov., a novel bacterium isolated from wastewater reservoir sediment. J Microbiol 46:40–44 [CrossRef]
    [Google Scholar]
  20. Roh S. W., Nam Y.-D., Chang H.-W., Kim K.-H., Sung Y., Kim M.-S., Oh H.-M., Bae J.-W. 2009; Haloterrigena jeotgali sp. nov., an extremely halophilic archaeon from salt-fermented food. Int J Syst Evol Microbiol 59:2359–2363 [CrossRef]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  22. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Savage K. N., Krumholz L. R., Oren A., Elshahed M. S. 2007; Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring.. Int J Syst Evol Microbiol 57:19–24 [CrossRef]
    [Google Scholar]
  24. Sehgal S. N., Gibbons N. E. 1960; Effect of some metal ions on the growth of Halobacterium cutirubrum . Can J Microbiol 6:165–169 [CrossRef]
    [Google Scholar]
  25. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  27. Xin H., Itoh T., Zhou P., Suzuki K., Kamekura M., Nakase T. 2000; Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 50:1297–1303 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.013037-0
Loading
/content/journal/ijsem/10.1099/ijs.0.013037-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error