1887

Abstract

A chemo-organotrophic, aerobic, facultatively anaerobic, non-motile strain, MWH-C5, isolated from the water column of the oligomesotrophic Lake Mondsee (Austria), was characterized phenotypically, phylogenetically and chemotaxonomically. The predominant fatty acids of the strain were C 7/6, C, C and C-3OH, the major quinone was ubiquinone Q-8 and the G+C content of the DNA of the strain was 55.5 mol%. 16S rRNA gene similarity to the closest related type strains was 96.6 % ( LMG 4328) and 95.7 % ( FR3). Phylogenetic analysis of 16S rRNA gene sequences revealed the affiliation of the strain with the family (); however, the phylogenetic position of the strain did not support an affiliation to any previously described genus within this family. A family-wide comparison of traits revealed that the strain possesses a unique combination of DNA G+C content, major fatty acids and major 3-hydroxy fatty acid. Furthermore, the strain differs in several traits from the closest related genera. Based on the phylogeny of the strain and differences from closely related genera, we propose to establish the new genus and species gen. nov., sp. nov. to accommodate this strain. The type strain of is MWH-C5 (=DSM 21645 =CCUG 56720). The type strain is closely related to a large number of uncultured bacteria detected by cultivation-independent methods in various freshwater systems.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.013292-0
2010-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/6/1358.html?itemId=/content/journal/ijsem/10.1099/ijs.0.013292-0&mimeType=html&fmt=ahah

References

  1. Bruland N., Bathe S., Willems A., Steinbüchel A. 2009; Pseudorhodoferax soli gen. nov., sp. nov. and Pseudorhodoferax caeni sp. nov., two members of the class Betaproteobacteria belonging to the family Comamonadaceae . Int J Syst Evol Microbiol 59:2702–2707 [CrossRef]
    [Google Scholar]
  2. Crump B. C., Hobbie J. E. 2005; Synchrony and seasonality in bacterioplankton communities of two temperate rivers. Limnol Oceanogr 50:1718–1729 [CrossRef]
    [Google Scholar]
  3. Crump B. C., Armbrust E. V., Baross J. A. 1999; Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Appl Environ Microbiol 65:3192–3204
    [Google Scholar]
  4. Cummings M. P., Huskamp J. C. 2005; Grid computing. Educause Rev 40:116–117
    [Google Scholar]
  5. Ding L., Yokota A. 2004; Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [ Pseudomonas ] huttiensis , [ Pseudomonas ] lanceolata , [ Aquaspirillum ] delicatum and [ Aquaspirillum ] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov. Int J Syst Evol Microbiol 54:2223–2230 [CrossRef]
    [Google Scholar]
  6. Eiler A., Bertilsson S. 2004; Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ Microbiol 6:1228–1243 [CrossRef]
    [Google Scholar]
  7. Finneran K. T., Johnsen C. V., Lovley D. R. 2003; Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III. Int J Syst Evol Microbiol 53:669–673 [CrossRef]
    [Google Scholar]
  8. Grabovich M., Gavrish E., Kuever J., Lysenko A. M., Podkopaeva D., Dubinina G. 2006; Proposal of Giesbergeria voronezhensis gen.nov., sp. nov. and G. kuznetsovii sp. nov. and reclassification of [ Aquaspirillum ] anulus , [ A. ] sinuosum and [ A. ] giesbergeri as Giesbergeria anulus comb. nov., G. sinuosa comb. nov. and G. giesbergeri comb. nov., and [ Aquaspirillum ] metamorphum and [ A. ] psychrophilum as Simplicispira metamorpha gen. nov., comb. nov. and S. psychrophila comb. nov. Int J Syst Evol Microbiol 56:569–576 [CrossRef]
    [Google Scholar]
  9. Greenblatt C. L., Davis A., Clement B. G., Kitts C. L., Cox T., Cano R. J. 1999; Diversity of microorganisms isolated from amber. Microb Ecol 38:58–68 [CrossRef]
    [Google Scholar]
  10. Hahn M. W. 2006; The microbial diversity of inland waters. Curr Opin Biotechnol 17:256–261 [CrossRef]
    [Google Scholar]
  11. Hahn M. W., Stadler P., Wu Q. L., Pöckl M. 2004; The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 57:379–390 [CrossRef]
    [Google Scholar]
  12. Hahn M. W., Pöckl M., Wu Q. L. 2005; Low intraspecific diversity in a Polynucleobacter subcluster population numerically dominating bacterioplankton of a freshwater pond. Appl Environ Microbiol 71:4539–4547 [CrossRef]
    [Google Scholar]
  13. Hahn M. W., Lang E., Brandt U., Wu Q. L., Scheuerl T. 2009; Emended description of the genus Polynucleobacter and the species Polynucleobacter necessarius and proposal of two subspecies, P.necessarius subsp. necessarius subsp.nov. and P. necessarius subsp. asymbioticus subsp. nov. Int J Syst Evol Microbiol 59:2002–2009 [CrossRef]
    [Google Scholar]
  14. Hahn M. W., Kasalický V., Jezbera J., Brandt U., Šimek K. 2010; Limnohabitans australis sp. nov., isolated from a freshwater pond, and emended description of the genus Limnohabitans . Int J Syst Evol Microbiol in press [View Article]
    [Google Scholar]
  15. Heulin T., Barakat M., Christen R., Lesourd M., Sutra L., De Luca G., Achouak W. 2003; Ramlibacter tataouinensis gen. nov., sp. nov., and Ramlibacter henchirensis sp. nov., cyst-producing bacteria isolated from subdesert soil in Tunisia. Int J Syst Evol Microbiol 53:589–594 [CrossRef]
    [Google Scholar]
  16. Hiraishi A., Hoshino Y., Satoh T. 1991; Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the “ Rhodocyclus gelatinosus -like” group. Arch Microbiol 155:330–336
    [Google Scholar]
  17. Irgens R. L., Gosink J. J., Staley J. T. 1996; Polaromonas vacuolata gen. nov., sp. nov., a psychrophilic, marine, gas vacuolate bacterium from Antarctica. Int J Syst Bacteriol 46:822–826 [CrossRef]
    [Google Scholar]
  18. Jeon C. O., Park W., Ghiorse W. C., Madsen E. L. 2004; Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int J Syst Evol Microbiol 54:93–97 [CrossRef]
    [Google Scholar]
  19. Kämpfer P., Busse H.-J., Falsen E. 2006; Polaromonas aquatica sp. nov., isolated from tap water. Int J Syst Evol Microbiol 56:605–608 [CrossRef]
    [Google Scholar]
  20. Kasalický V., Jezbera J., Simek K., Hahn M. W. 2010; Limnohabitans planktonicus sp. nov., and Limnohabitans parvus sp. nov., planktonic betaproteobacteria isolated from a freshwater reservoir, and emended description of the genus Limnohabitans . Int J Syst Evol Microbiol in press [View Article]
    [Google Scholar]
  21. Kim B.-Y., Weon H.-Y., Yoo S.-H., Lee S.-Y., Kwon S.-W., Go S.-J., Stackebrandt E. 2006; Variovorax soli sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 56:2899–2901 [CrossRef]
    [Google Scholar]
  22. Lindström E. S., Kamst-Van Agterveld M. P., Zwart G. 2005; Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl Environ Microbiol 71:8201–8206 [CrossRef]
    [Google Scholar]
  23. Lütke-Eversloh T., Elbanna K., Cnockaert M. C., Mergaert J., Swings J., Manaia C. M., Steinbüchel A. 2004; Caenibacterium thermophilum is a later synonym of Schlegelella thermodepolymerans . Int J Syst Evol Microbiol 54:1933–1935 [CrossRef]
    [Google Scholar]
  24. Madigan M. T., Jung D. O., Woese C. R., Achenbach L. A. 2000; Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat. Arch Microbiol 173:269–277 [CrossRef]
    [Google Scholar]
  25. Miwa H., Ahmed I., Yoon J., Yokota A., Fujiwara T. 2008; Variovorax boronicumulans sp. nov., a boron-accumulating bacterium isolated from soil. Int J Syst Evol Microbiol 58:286–289 [CrossRef]
    [Google Scholar]
  26. Nylander J. A., Wilgenbusch J., Warren D. L., Swofford D. L. 2008; AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24:581–583 [CrossRef]
    [Google Scholar]
  27. Ronquist F., Huelsenbeck J. P. 2003; MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574 [CrossRef]
    [Google Scholar]
  28. Ryu S. H., Lee D. S., Park M., Wang Q., Jang H. H., Park W., Jeon C. O. 2008; Caenimonas koreensis gen. nov., sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 58:1064–1068 [CrossRef]
    [Google Scholar]
  29. Shaw A. K., Halpern A. L., Beeson K., Tran B., Venter J. C., Martiny J. B. 2008; It's all relative: ranking the diversity of aquatic bacterial communities. Environ Microbiol 10:2200–2210 [CrossRef]
    [Google Scholar]
  30. Šimek K., Pernthaler J., Weinbauer M. G., Horňák K., Dolan J. R., Nedoma J., Mašín M., Amann R. 2001; Changes in bacterial community composition, dynamics and viral mortality rates associated with enhanced flagellate grazing in a meso-eutrophic reservoir. Appl Environ Microbiol 67:2723–2733 [CrossRef]
    [Google Scholar]
  31. Šimek K., Horňák K., Jezbera J., Mašín M., Nedoma J., Gasol J. M., Schauer M. 2005; Influence of top-down and bottom-up manipulations on the R-BT065 subcluster of β -proteobacteria, an abundant group in bacterioplankton of a freshwater reservoir. Appl Environ Microbiol 71:2381–2390 [CrossRef]
    [Google Scholar]
  32. Šimek K., Kasalicky V., Jezbera J., Jezberová J., Hejzlar J., Hahn M. W. 2010a; Broad habitat range of the phylogenetically narrow R-BT065 cluster, representing a core group of the betaproteobacterial genus Limnohabitans. Appl Environ Microbiol 76:631–639 [CrossRef]
    [Google Scholar]
  33. Šimek K., Kasalicky V., Hornák K., Hahn M. W., Weinbauer M. G. 2010b; Assessing niche separation among coexisting Limnohabitans strains through interactions with a competitor, viruses, and a bacterivore. Appl Environ Microbiol 76:1406–1416 [CrossRef]
    [Google Scholar]
  34. Sizova M., Panikov N. 2007; Polaromonas hydrogenivorans sp. nov., a psychrotolerant hydrogen-oxidizing bacterium from Alaskan soil. Int J Syst Evol Microbiol 57:616–619 [CrossRef]
    [Google Scholar]
  35. Weon H. Y., Yoo S. H., Hong S. B., Kwon S. W., Stackebrandt E., Go S. J., Koo B. S. 2008; Polaromonas jejuensis sp. nov., isolated from soil in Korea. Int J Syst Evol Microbiol 58:1525–1528 [CrossRef]
    [Google Scholar]
  36. Yoon J.-H., Kang S.-J., Oh T.-K. 2006; Variovorax dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:811–814 [CrossRef]
    [Google Scholar]
  37. Zwart G., Crump B. C., Kamst-van Agterveld M. P., Hagen F., Han S. K. 2002; Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155 [CrossRef]
    [Google Scholar]
  38. Zwart G., van Hannen E. J., Kamst-van Agterveld M. P., Van der Gucht K., Lindström E. S., Van Wichelen J., Lauridsen T., Crump B. C., Han S.-K., Declerck S. 2003; Rapid screening for freshwater bacterial groups by using reverse line blot hybridization. Appl Environ Microbiol 69:5875–5883 [CrossRef]
    [Google Scholar]
  39. Zwickl D. J. 2006; Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion . PhD thesis University of Texas at Austin; Austin, TX, USA:
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.013292-0
Loading
/content/journal/ijsem/10.1099/ijs.0.013292-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error