1887

Abstract

A Gram-negative, aerobic, rod-shaped, motile -like bacterial strain, J22, was isolated from black sand collected from Soesoggak, Jeju Island, Korea. Growth of strain J22 was observed in R2A medium at temperatures between 10 and 42 °C (optimum 30 °C), between pH 6.5 and 10.5 (optimum pH 7.5) and at a NaCl concentration between 0 and 4 % (w/v) (optimum 0–1 %). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain J22 belonged to the genus , with high sequence similarities of >97 % to the sequence of the type strains CB88, DS-18, CB17, TK0051, KSL-102, CB63, CB81 and CB7. Strain J22 exhibited DNA–DNA relatedness values of less than 22.2 % with the phylogenetically related species of the genus . The DNA G+C content of strain J22 was 66.3 mol%. The predominant cellular fatty acids were C 7, C and C 9; C 3-OH was present, which chemotaxonomically characterizes the members of the genus . Phylogenetic, genomic and biochemical characteristics served to differentiate this isolate from recognized members of the genus . Strain J22 (=KCTC 22177=JCM 15911) should be classified as a novel species in the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.013557-0
2010-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/7/1488.html?itemId=/content/journal/ijsem/10.1099/ijs.0.013557-0&mimeType=html&fmt=ahah

References

  1. Abraham W.-R., Strompl C., Meyer H., Lindholst S., Moore E. R., Christ R., Vancanneyt M., Tindall B. J., Bennasar A. other authors 1999 Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter . Int J Syst Bacteriol 49, 1053–1073 [CrossRef]
  2. Atlas R. M. 1993 Handbook of Microbiological Media Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  3. Baker G. C., Smith J. J., Cowan D. A. 2003; Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555 [CrossRef]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  6. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773 [CrossRef]
    [Google Scholar]
  8. Heimbrook M. E., Wang W. L., Campbell G. 1989; Staining bacterial flagella easily. J Clin Microbiol 27:2612–2615
    [Google Scholar]
  9. Hirayama H., Tamaoka J., Horikoshi K. 1996; Improved immobilization of DNA to microwell plates for DNA-DNA hybridization. Nucleic Acids Res 24:4098–4099 [CrossRef]
    [Google Scholar]
  10. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  11. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  12. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  13. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids . MIDI Technical Note 101: Newark, DE: MIDI;
    [Google Scholar]
  14. Segers P., Vancanneyt M., Pot B., Torck U., Hoset B., Dewettinck D., Falsen E., Kersters K., De Vos P. 1994; Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen.nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int J Syst Bacteriol 44:499–510 [CrossRef]
    [Google Scholar]
  15. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  16. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  17. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  18. Yoon J.-H., Kang S.-J., Oh H. W., Lee J.-S., Oh T.-K. 2006; Brevundimonas kwangchunensis sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol 56:613–617 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.013557-0
Loading
/content/journal/ijsem/10.1099/ijs.0.013557-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error