1887

Abstract

A Gram-negative, aerobic, moderately halophilic bacterium, designated strain Z35, was isolated from a Chinese traditional cured meat produced in Wuhan. The isolate grew with 1–20 % NaCl (optimum 10 %), at 4–42 °C (optimum 37 °C) and at pH 4.5–8.5 (optimum pH 7.0). Cells of strain Z35 were not motile and were rod or oval shaped. The genomic DNA G+C content was 59.1 mol%. The isoprenoid quinones were Q-9 (88.96 %), Q-8 (9.46 %) and Q-10 (1.58 %). The major fatty acids were C cyclo 8, C and C cyclo. Phylogenetic analysis based on 16S rRNA gene sequence analysis indicated that strain Z35 was closely related to the type strains of species with 93.7–95.3 % sequence similarities. Phylogenetic analysis based on 23S rRNA gene sequence similarity values also confirmed the phylogenetic position of the isolate. Therefore, based on the phenotypic, chemotaxonomic and phylogenetic evidence, strain Z35 is affiliated to , but is clearly differentiated from other species of this genus and represents a new member, for which the name sp. nov. is proposed. The type strain is Z35 (=CCTCC AB 209027 =NRRL B-59197 =DSM 23229).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.013797-0
2010-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/8/1881.html?itemId=/content/journal/ijsem/10.1099/ijs.0.013797-0&mimeType=html&fmt=ahah

References

  1. Arahal D. R., Ventosa A. 2008; International Committee on Systematics of Prokaryotes: subcommittee on the taxonomy of Halomonadaceae . Int J Syst Evol Microbiol 58:2670–2671 [CrossRef]
    [Google Scholar]
  2. Arahal D. R., Ludwig W., Schleifer K. H., Ventosa A. 2002; Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52:241–249
    [Google Scholar]
  3. Arahal D. R., Vreeland R. H., Litchfield C. D., Mormile M. R., Tindall B. J., Oren A., Bejar V., Quesada E., Ventosa A. 2007; Recommended minimal standards for describing new taxa of the family Halomonadaceae . Int J Syst Evol Microbiol 57:2436–2446 [CrossRef]
    [Google Scholar]
  4. Ben Ali Gam Z., Abdelkafi S., Casalot L., Tholozan J. L., Oueslati R., Labat M. 2007; Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989 emend Dobson and Franzmann 1996 emend. Ntougias et al. 2007. Int J Syst Evol Microbiol 57:2307–2313 [CrossRef]
    [Google Scholar]
  5. Cabrera A., Aguilera M., Fuentes S., Incerti C., Russell N. J., Ramos-Cormenzana A., Monteoliva-Sanchez M. 2007; Halomonas indalinina sp. nov., a moderately halophilic bacterium isolated from a solar saltern in Cabo de Gata, Almeria, southern Spain. Int J Syst Evol Microbiol 57:376–380 [CrossRef]
    [Google Scholar]
  6. Dobson S. J., Franzmann P. D. 1996; Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980),and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas , and placement of the genus Zymobacter in the family Halomonadaceae . Int J Syst Bacteriol 46:550–558 [CrossRef]
    [Google Scholar]
  7. Dobson S. J., McMeekin T. A., Franzmann P. D. 1993; Phylogenetic relationships between some members of the genera Deleya , Halomonas , and Halovibrio . Int J Syst Bacteriol 43:665–673 [CrossRef]
    [Google Scholar]
  8. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485
    [Google Scholar]
  9. Fairley D. J., Boyd D. R., Sharma N. D., Allen C. C. R., Morgan P., Larkin M. J. 2002; Aerobic metabolism of 4-hydroxybenzoic acid in Archaea via an unusual pathway involving an intramolecular migration (NIH shift). Appl Environ Microbiol 68:6246–6255 [CrossRef]
    [Google Scholar]
  10. Franzmann P. D., Wehmeyer U., Stackebrandt E. 1988; Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya . Syst Appl Microbiol 11:16–19 [CrossRef]
    [Google Scholar]
  11. Garriga M., Ehrmann M. A., Arnau J., Hugas M., Vogel R. F. 1998; Carnimonas nigrificans gen. nov., sp. nov., a bacterial causative agent for black spot formation on cured meat products. Int J Syst Bacteriol 48:677–686 [CrossRef]
    [Google Scholar]
  12. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V. 2002; A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375 [CrossRef]
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  14. Sánchez-Porro C., de la Haba R. R., Soto-Ramírez N., Márquez M. C., Montalvo-Rodríguez R., Ventosa A. 2009; Description of Kushneria aurantia gen. nov., sp. nov., a novel member of the family Halomonadaceae , and a proposal for reclassification of Halomonas marisflavi as Kushneria marisflavi comb. nov., of Halomonas indalinina as Kushneria indalinina comb. nov. and of Halomonas avicenniae as Kushneria avicenniae comb. nov. Int J Syst Evol Microbiol 59:397–405 [CrossRef]
    [Google Scholar]
  15. Soto-Ramirez N., Sánchez-Porro C., Rosas S., Gonzalez W., Quinones M., Ventosa A., Montalvo-Rodriguez R. 2007; Halomonas avicenniae sp. nov., isolated from the salty leaves of the black mangrove Avicennia germinans in Puerto Rico. Int J Syst Evol Microbiol 57:900–905 [CrossRef]
    [Google Scholar]
  16. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  17. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  18. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968
    [Google Scholar]
  19. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544
    [Google Scholar]
  20. Wilson K. H., Blitchington R. B., Greene R. C. 1990; Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 28:1942–1946
    [Google Scholar]
  21. Xie C. H., Yokota A. 2003; Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349 [CrossRef]
    [Google Scholar]
  22. Yoon J. H., Choi S. H., Lee K. C., Kho Y. H., Kang K. H., Park Y. H. 2001; Halomonas marisflavae sp. nov., a halophilic bacterium isolated from the Yellow Sea in Korea. Int J Syst Evol Microbiol 51:1171–1177 [CrossRef]
    [Google Scholar]
  23. Yoon J. H., Lee K. C., Kho Y. H., Kang K. H., Kim C. J., Park Y. H. 2002; Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 52:123–130
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.013797-0
Loading
/content/journal/ijsem/10.1099/ijs.0.013797-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error