1887

Abstract

A novel Gram-stain-negative, rod-shaped, non-motile bacterium, strain LW1, was isolated from a water sample collected at a depth of 3.5 m from Lonar Lake, Buldhana district, Maharashtra, India. The cell suspension was reddish-orange due to the presence of carotenoids. Strain LW1 was positive for catalase, oxidase, ornithine decarboxylase and lysine decarboxylase and negative for gelatinase, urease and lipase. Fatty acids were dominated by branched-chain fatty acids (>76 %), with a high abundance of iso-C (48 %), anteiso-C (7 %) and iso-C 3-OH (11 %). Strain LW1 contained MK-4 and MK-7 as the major respiratory quinones and phosphatidylglycerol, phosphatidylcholine and phosphatidylethanolamine as the major phospholipids. A sequence similarity search based on 16S rRNA gene sequences indicated that members of the genera and were the nearest phylogenetic neighbours with similarities of 91.8–92.3 %. Phylogenetic analyses indicated that strain LW1 formed a deep-rooted lineage distinct from the clades represented by the genera , , , and . Based on the above-mentioned phenotypic and phylogenetic characteristics, it is proposed that strain LW1 represents a novel species in a new genus, gen. nov., sp. nov. (type strain LW1=KCTC 22604=CCUG 57479). The genomic DNA G+C content of strain LW1 is 42.7±1 mol%.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.014076-0
2010-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/4/721.html?itemId=/content/journal/ijsem/10.1099/ijs.0.014076-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Borsodi A. K., Micsinai A., Kovács G., Tóth E., Schumann P., Kovács A. L., Böddi B., Márialigeti K. 2003; Pannonibacter phragmitetus gen. nov., sp. nov., a novel alkalitolerant bacterium isolated from decomposing reed rhizomes in a Hungarian soda lake. Int J Syst Evol Microbiol 53:555–561 [CrossRef]
    [Google Scholar]
  3. Bowman J. P., Nichols C. M., Gibson J. A. 2003; Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 53:1343–1355 [CrossRef]
    [Google Scholar]
  4. Brettar I., Christen R., Höfle M. G. 2004a; Belliella baltica gen. nov., sp. nov., a novel marine bacterium of the Cytophaga Flavobacterium Bacteroides group isolated from surface water of the central Baltic Sea. Int J Syst Evol Microbiol 54:65–70 [CrossRef]
    [Google Scholar]
  5. Brettar I., Christen R., Höfle M. G. 2004b; Aquiflexum balticum gen. nov., sp. nov., a novel marine bacterium of the Cytophaga Flavobacterium Bacteroides group isolated from surface water of the central Baltic Sea. Int J Syst Evol Microbiol 54:2335–2341 [CrossRef]
    [Google Scholar]
  6. Carrasco I. J., Márquez M. C., Xue Y., Ma Y., Cowan D. A., Jones B. E., Grant W. D., Ventosa A. 2007; Bacillus chagannorensis sp. nov., a moderate halophile from a soda lake in Inner Mongolia, China. Int J Syst Evol Microbiol 57:2084–2088 [CrossRef]
    [Google Scholar]
  7. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef]
    [Google Scholar]
  8. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [CrossRef]
    [Google Scholar]
  9. Copa-Patiño J. L., Arenas M., Soliveri J., Sánchez-Porro C., Ventosa A. 2008; Algoriphagus hitonicola sp. nov., isolated from an athalassohaline lagoon. Int J Syst Evol Microbiol 58:424–428 [CrossRef]
    [Google Scholar]
  10. Delgado O., Quillaguamán J., Bakhtiar S., Mattiasson B., Gessesse A., Hatti-Kaul R. 2006; Nesterenkonia aethiopica sp. nov., an alkaliphilic, moderate halophile isolated from an Ethiopian soda lake. Int J Syst Evol Microbiol 56:1229–1232 [CrossRef]
    [Google Scholar]
  11. Doronina N. V., Darmaeva T. D., Trotsenko Y. A. 2003; Methylophaga alcalica sp. nov., a novel alkaliphilic and moderately halophilic, obligately methylotrophic bacterium from an East Mongolian saline soda lake. Int J Syst Evol Microbiol 53:223–229 [CrossRef]
    [Google Scholar]
  12. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5.1. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  13. Feng J., Zhou P., Zhou Y. G., Liu S. J., Warren-Rhodes K. 2005; Halorubrum alkaliphilum sp. nov., a novel haloalkaliphile isolated from a soda lake in Xinjiang, China. Int J Syst Evol Microbiol 55:149–152 [CrossRef]
    [Google Scholar]
  14. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K. 1997; Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 47:1129–1133 [CrossRef]
    [Google Scholar]
  15. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [CrossRef]
    [Google Scholar]
  16. Hoover R. B., Pikuta E. V., Bej A. K., Marsic D., Whitman W. B., Tang J., Krader P. 2003; Spirochaeta americana sp. nov., a new haloalkaliphilic, obligately anaerobic spirochaete isolated from soda Mono Lake in California. Int J Syst Evol Microbiol 53:815–821 [CrossRef]
    [Google Scholar]
  17. Joshi A. A., Kanekar P. P., Kelkar A. S., Shouche Y. S., Vani A. A., Borgave S. B., Sarnaik S. S. 2008; Cultivable bacterial diversity of alkaline Lonar lake, India. Microb Ecol 55:163–172 [CrossRef]
    [Google Scholar]
  18. Kanal H., Kobayashi T., Aono R., Kudo T. 1995; Natronococcus amylolyticus sp. nov., a haloalkaliphilic archaeon. Int J Syst Bacteriol 45:762–766 [CrossRef]
    [Google Scholar]
  19. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  20. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  21. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  22. Lányí B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  23. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  24. Milford A. D., Achenbach L. A., Jung D. O., Madigan M. T. 2000; Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch Microbiol 174:18–27 [CrossRef]
    [Google Scholar]
  25. Nedashkovskaya O. I., Vancanneyt M., Van Trappen S., Vandemeulebroecke K., Lysenko A. M., Rohde M., Falsen E., Frolova G. M., Mikhailov V. V., Swings J. 2004; Description of Algoriphagus aquimarinus sp. nov., Algoriphagus chordae sp. nov. and Algoriphagus winogradskyi sp. nov., from sea water and algae, transfer of Hongiella halophila Yi and Chun 2004 to the genus Algoriphagus as Algoriphagus halophilus comb. nov. and emended descriptions of the genera Algoriphagus Bowman et al. 2003 and Hongiella Yi and Chun 2004. Int J Syst Evol Microbiol 54:1757–1764 [CrossRef]
    [Google Scholar]
  26. Nedashkovskaya O. I., Kim S. B., Lee M. S., Park M. S., Lee K. H., Lysenko A. M., Oh H. W., Mikhailov V. V., Bae K. S. 2005; Cyclobacterium amurskyense sp. nov., a novel marine bacterium isolated from sea water. Int J Syst Evol Microbiol 55:2391–2394 [CrossRef]
    [Google Scholar]
  27. Nedashkovskaya O. I., Kim S. B., Vancanneyt M., Lysenko A. M., Shin D. S., Park M. S., Lee K. H., Jung W. J., Kalinovskaya N. I. other authors 2006; Echinicola pacifica gen. nov., sp. nov., a novel flexibacterium isolated from the sea urchin Strongylocentrotus intermedius . Int J Syst Evol Microbiol 56:953–958 [CrossRef]
    [Google Scholar]
  28. Nedashkovskaya O. I., Kim S. B., Hoste B., Shin D. S., Beleneva I. A., Vancanneyt M., Mikhailov V. V. 2007a; Echinicola vietnamensis sp. nov., a member of the phylum Bacteroidetes isolated from seawater. Int J Syst Evol Microbiol 57:761–763 [CrossRef]
    [Google Scholar]
  29. Nedashkovskaya O. I., Kim S. B., Kwon K. K., Shin D. S., Luo X., Kim S. J., Mikhailov V. V. 2007b; Proposal of Algoriphagus vanfongensis sp. nov., transfer of members of the genera Hongiella Yi and Chun 2004 emend. Nedashkovskaya et al. 2004 and Chimaereicella Tiago et al. 2006 to the genus Algoriphagus , and emended description of the genus Algoriphagus Bowman et al. 2003 emend. Nedashkovskaya et al. 2004. Int J Syst Evol Microbiol 57:1988–1994 [CrossRef]
    [Google Scholar]
  30. Raj H. D., Maloy S. R. 1990; Proposal of Cyclobacterium marinus gen. nov., comb. nov., for a marine bacterium previously assigned to the genus Flectobacillus . Int J Syst Bacteriol 40:337–347 [CrossRef]
    [Google Scholar]
  31. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  32. Sly L. I., Blackall L. L., Kraat P. C., Tian-Shen T., Sangkhobol V. 1986; The use of second derivative plots for the determination of mol% guanine plus cytosine of DNA by the thermal denaturation method. J Microbiol Methods 5:139–156 [CrossRef]
    [Google Scholar]
  33. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  34. Sorokin D. Y., Tourova T. P., Sjollema K. A., Kuenen J. G. 2003; Thialkalivibrio nitratireducens sp. nov., a nitrate-reducing member of an autotrophic denitrifying consortium from a soda lake. Int J Syst Evol Microbiol 53:1779–1783 [CrossRef]
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  36. Ying J. Y., Wang B. J., Yang S. S., Liu S. J. 2006; Cyclobacterium lianum sp. nov., a marine bacterium isolated from sediment of an oilfield in the South China Sea, and emended description of the genus Cyclobacterium . Int J Syst Evol Microbiol 56:2927–2930 [CrossRef]
    [Google Scholar]
  37. Yoon J. H., Lee M. H., Kang S. J., Oh T. K. 2006; Algoriphagus terrigena sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:777–780 [CrossRef]
    [Google Scholar]
  38. Zavarzina D. G., Kolganova T. V., Bulygina E. S., Kostrikina N. A., Turova T. P., Zavarzin G. A. 2006; Geoalkalibacter ferrihydriticus gen. nov., sp. nov., the first alkaliphilic representative of the family Geobacteraceae , isolated from a soda lake. Mikrobiologiia 75:775–785 (in Russian
    [Google Scholar]
  39. Zhilina T. N., Appel R., Probian C., Brossa E. L., Harder J., Widdel F., Zavarzin G. A. 2004; Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake. Arch Microbiol 182:244–253
    [Google Scholar]
  40. Zobell C. E. 1941; Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4:42–75
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.014076-0
Loading
/content/journal/ijsem/10.1099/ijs.0.014076-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error