1887

Abstract

Four isolates (FSL S4-120, FSL S4-696, FSL S4-710, and FSL S4-965) of Gram-positive, motile, facultatively anaerobic, non-spore-forming bacilli that were phenotypically similar to species of the genus were isolated from soil, standing water and flowing water samples obtained from the natural environment in the Finger Lakes National Forest, New York, USA. The four isolates were closely related to one another and were determined to be the same species by whole genome DNA–DNA hybridization studies (>82 % relatedness at 55 °C and >76 % relatedness at 70 °C with 0.0–0.5 % divergence). 16S rRNA gene sequence analysis confirmed their close phylogenetic relatedness to and and more distant relatedness to and Phylogenetic analysis of partial sequences for and showed that these isolates form a well-supported sistergroup to . The four isolates were sufficiently different from and by DNA–DNA hybridization to warrant their designation as a new species of the genus . The four isolates yielded positive reactions in the AccuProbe test that is purported to be specific for , did not ferment -rhamnose, were non-haemolytic on blood agar media, and did not contain a homologue of the virulence gene island. On the basis of their phenotypic characteristics and their genotypic distinctiveness from and the four isolates should be classified as a new species within the genus , for which the name sp. nov. is proposed. The type strain of is FSL S4-120 (=ATCC BAA-1595 =BEIR NR 9579 =CCUG 56148). has not been associated with human or animal disease at this time.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.014118-0
2010-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/6/1280.html?itemId=/content/journal/ijsem/10.1099/ijs.0.014118-0&mimeType=html&fmt=ahah

References

  1. Bille J., Catimel B., Bannerman E., Jacquet C., Yersin M. N., Caniaux I., Monget D., Rocourt J. 1992; API Listeria , a new and promising one-day system to identify Listeria isolates. Appl Environ Microbiol 58:1857–1860
    [Google Scholar]
  2. Bishop D. K., Hinrichs D. J. 1987; Adoptive transfer of immunity to Listeria monocytogenes . The influence of in vitro stimulation on lymphocyte subset requirements. J Immunol 139:2005–2009
    [Google Scholar]
  3. Boerlin P., Rocourt J., Grimont F., Grimont P. A. D., Jacquet C. C., Piffaretti J.-C. 1992; Listeria Ivanovii subsp. londoniensis subsp. nov. Int J Syst Bacteriol 42:69–73 [CrossRef]
    [Google Scholar]
  4. Bonner T. I., Brenner D. J., Neufeld B. R., Britten R. J. 1973; Reduction in the rate of DNA reassociation by sequence divergence. J Mol Biol 81:123–135 [CrossRef]
    [Google Scholar]
  5. Brenner D. J., McWhorter A. C., Knutson J. K. L., Steigerwalt A. G. 1982; Escherichia vulneris : a new species of enterobacteriaceae associated with human wounds. J Clin Microbiol 15:1133–1140
    [Google Scholar]
  6. Cai S., Wiedmann M. 2001; Characterization of the prfA virulence gene cluster insertion site in non-hemolytic Listeria spp .: probing the evolution of the Listeria virulence gene island. Curr Microbiol 43:271–277 [CrossRef]
    [Google Scholar]
  7. Cai S., Kabuki D. Y., Kuaye A. Y., Cargioli T. G., Chung M. S., Nielsen R., Wiedmann M. 2002; Rational design of DNA sequence-based strategies for subtyping Listeria monocytogenes . J Clin Microbiol 40:3319–3325 [CrossRef]
    [Google Scholar]
  8. Collins M. D., Wallbanks S., Lane D. J., Shah J., Nietupski R., Smida J., Dorsch M., Stackebrandt E. 1991; Phylogenetic analysis of the genus Listeria based on reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol 41:240–246 [CrossRef]
    [Google Scholar]
  9. Czajka J., Bsat N., Piani M., Russ W., Sultana K., Wiedmann M., Whitaker R., Batt C. A. 1993; Differentiation of Listeria monocytogenes and Listeria innocua by 16S rRNA genes and intraspecies discrimination of Listeria monocytogenes strains by random amplified polymorphic DNA polymorphisms. Appl Environ Microbiol 59:304–308
    [Google Scholar]
  10. Doumith M., Buchrieser C., Glaser P., Jacquet C., Martin P. 2004a; Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J Clin Microbiol 42:3819–3822 [CrossRef]
    [Google Scholar]
  11. Doumith M., Cazalet C., Simoes N., Frangeul L., Jacquet C., Kunst F., Martin P., Cossart P., Glaser P., Buchrieser C. 2004b; New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect Immun 72:1072–1083 [CrossRef]
    [Google Scholar]
  12. Doumith M., Jacquet C., Gerner-Smidt P., Graves L. M., Loncarevic S., Mathisen T., Morvan A., Salcedo C., Torpdahl M. other authors 2005; Multicenter validation of a multiplex PCR assay for differentiating the major Listeria monocytogenes serovars 1/2a, 1/2b, 1/2c, and 4b: toward an international standard. J Food Prot 68:2648–2650
    [Google Scholar]
  13. Fugett E., Fortes E., Nnoka C., Wiedmann M. 2006; International Life Sciences Institute North America Listeria monocytogenes strain collection: development of standard Listeria monocytogenes strain sets for research and validation studies. J Food Prot 69:2929–2938
    [Google Scholar]
  14. Gouin E., Mengaud J., Cossart P. 1994; The virulence gene cluster of Listeria monocytogenes is also present in Listeria ivanovii , an animal pathogen, and Listeria seeligeri , a nonpathogenic species. Infect Immun 62:3550–3553
    [Google Scholar]
  15. Graves L. M., Swaminathan B. 2001; PulseNet standardized protocol for subtyping Listeria monocytogenes by macrorestriction and pulsed-field gel electrophoresis. Int J Food Microbiol 65:55–62 [CrossRef]
    [Google Scholar]
  16. Graves L. M., Hunter S. B., Ong A. R., Schoonmaker-Bopp D., Hise K., Kornstein L., DeWitt W. E., Hayes P. S., Dunne E. other authors 2005; Microbiological aspects of the investigation that traced the 1998 outbreak of Listeriosis in the United States to contaminated hot dogs and establishment of molecular subtyping-based surveillance for Listeria monocytogenes in the PulseNet Network. J Clin Microbiol 43:2350–2355 [CrossRef]
    [Google Scholar]
  17. Gray M. J., Zadoks R. N., Fortes E. D., Dogan B., Cai S., Chen Y., Scott V. N., Gombas D. E., Boor K. J., Wiedmann M. 2004; Listeria monocytogenes isolates from foods and humans form distinct but overlapping populations. Appl Environ Microbiol 70:5833–5841 [CrossRef]
    [Google Scholar]
  18. Guindon S. P., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [CrossRef]
    [Google Scholar]
  19. Hain T., Chatterjee S. S., Ghai R., Kuenne C. T., Billion A., Steinweg C., Domann E., Kärst U., Jänsch L. other authors 2007; Pathogenomics of Listeria spp. Int J Med Microbiol 297:541–557 [CrossRef]
    [Google Scholar]
  20. Johnson J., Jinneman K., Stelma G., Smith B. G., Lye D., Messer J., Ulaszek J., Evsen L., Gendel S. other authors 2004; Natural atypical Listeria innocua strains with Listeria monocytogenes pathogenicity island 1 genes. Appl Environ Microbiol 70:4256–4266 [CrossRef]
    [Google Scholar]
  21. Kuhn M., Goebel W. 2007; Molecular virulence determinants of Listeria monocytogenes . In Listeria, Listeriosis, and Food Safety , 3rd edn. pp 111–155 Edited by Ryser E. T., Marth E. H. Boca Raton, FL: CRC Press;
    [Google Scholar]
  22. Maddison D. R., Maddison W. P. 2005 MacClade Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  23. Mandel M., Igambi L., Bergendahl J., Dodson M. L. Jr, Scheltgen E. 1970; Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J Bacteriol 101:333–338
    [Google Scholar]
  24. Morey R. E., Galloway R. L., Bragg S. L., Steigerwalt A. G., Mayer L. W., Levett P. N. 2006; Species-specific identification of Leptospiraceae by 16S rRNA gene sequencing. J Clin Microbiol 44:3510–3516 [CrossRef]
    [Google Scholar]
  25. Nightingale K. K., Windham K., Martin K. E., Yeung M., Wiedmann M. 2005a; Select Listeria monocytogenes subtypes commonly found in foods carry distinct nonsense mutations in inlA , leading to expression of truncated and secreted internalin A, and are associated with a reduced invasion phenotype for human intestinal epithelial cells. Appl Environ Microbiol 71:8764–8772 [CrossRef]
    [Google Scholar]
  26. Nightingale K. K., Windham K., Wiedmann M. 2005b; Evolution and molecular phylogeny of Listeria monocytogenes isolated from human and animal listeriosis cases and foods. J Bacteriol 187:5537–5551 [CrossRef]
    [Google Scholar]
  27. Nightingale K. K., Lyles K., Ayodele M., Jalan P., Nielsen R., Wiedmann M. 2006; Novel method to identify source-associated phylogenetic clustering shows that Listeria monocytogenes includes niche-adapted clonal groups with distinct ecological preferences. J Clin Microbiol 44:3742–3751 [CrossRef]
    [Google Scholar]
  28. Nightingale K., Bovell L., Grajczyk A., Wiedmann M. 2007; Combined sigB allelic typing and multiplex PCR provide improved discriminatory power and reliability for Listeria monocytogenes molecular serotyping. J Microbiol Methods 68:52–59 [CrossRef]
    [Google Scholar]
  29. Ninet B., Bannerman E., Bille J. 1992; Assessment of the AccuProbe Listeria monocytogenes culture identification reagent kit for rapid colony confirmation and its application in various enrichment broths. Appl Environ Microbiol 58:4055–4059
    [Google Scholar]
  30. Norton D. M., McCamey M. A., Gall K. L., Scarlett J. M., Boor K. J., Wiedmann M. 2001; Molecular studies on the ecology of Listeria monocytogenes in the smoked fish processing industry. Appl Environ Microbiol 67:198–205 [CrossRef]
    [Google Scholar]
  31. Okwumabua O., Swaminathan B., Edmonds P., Wenger J., Hogan J., Alden M. 1992; Evaluation of a chemiluminescent DNA probe assay for the rapid confirmation of Listeria monocytogenes . Res Microbiol 143:183–189 [CrossRef]
    [Google Scholar]
  32. Orsi R. H., Maron S. B., Nightingale K. K., Jerome M., Tabor H., Wiedmann M. 2008; Lineage specific recombination and positive selection in coding and intragenic regions contributed to evolution of the main Listeria monocytogenes virulence gene cluster. Infect Genet Evol 8:566–576 [CrossRef]
    [Google Scholar]
  33. Posada D. 2008; jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256 [CrossRef]
    [Google Scholar]
  34. Roberts A., Nightingale K., Jeffers G., Fortes E., Kongo J. M., Wiedmann M. 2006; Genetic and phenotypic characterization of Listeria monocytogenes lineage III. Microbiology 152:685–693 [CrossRef]
    [Google Scholar]
  35. Rocourt J., Buchrieser C. 2007; The genus Listeria and Listeria monocytogenes : phylogenetic position, taxonomy, and identification. In Listeria, Listeriosis, and Food Safety , 3rd edn. pp 1–20 Edited by Ryser E. T., Marth E. H. Boca Raton, FL: CRC Press;
    [Google Scholar]
  36. Rocourt J., Alonso J.-M., Seeliger H. P. R. 1983; Virulence comparée des cinq groupes génomiques de Listeria monocytogenes (sensu lato) . Ann Inst Pasteur Microbiol 134:359–364 [CrossRef]
    [Google Scholar]
  37. Rocourt J., Hof H., Schrettenbrunner A., Malinverni R., Bille J. 1986; Acute purulent Listeria seelingeri meningitis in an immunocompetent adult. Schweiz Med Wochenschr 116:248–251
    [Google Scholar]
  38. Sallen B., Rajoharison A., Desvarenne S., Quinn F., Mabilat C. 1996; Comparative analysis of 16S and 23S rRNA sequences of Listeria species. Int J Syst Bacteriol 46:669–674 [CrossRef]
    [Google Scholar]
  39. Seeliger H. P. R., Rocourt J., Schrettenbrunner A., Grimont P. A. D., Jones D. 1984; Listeria ivanovii sp. nov. Int J Syst Bacteriol 34:336–337 [CrossRef]
    [Google Scholar]
  40. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  41. Swofford D. L. 2002 paup*: Phylogenetic analysis using parsimony (and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  42. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  43. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  44. Weyant R. S., Moss C. W., Weaver R. E., Hollis D. G., Jordan J. G., Cook E. C., Daneshvar M. I. 1996 Identification of Unusual Pathogenic Gram-negative Aerobic and Facultatively Anaerobic Bacteria , 2nd edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  45. Wiedmann M., Bruce J. L., Keating C., Johnson A. E., McDonough P. L., Batt C. A. 1997; Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect Immun 65:2707–2716
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.014118-0
Loading
/content/journal/ijsem/10.1099/ijs.0.014118-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error