1887

Abstract

A novel halophilic bacterium, designated strain MSS4, was isolated from the solar salterns of Mesolongi, Greece. The micro-organism, a motile, Gram-stain-positive, aerobic rod, proliferated at salinities of 1.0–4.0 M NaCl, with optimal growth at 2.5 M NaCl. Endospores were not observed. Strain MSS4 showed optimal growth at 37 °C and pH 8.0. The G+C content of its DNA was 47.2 mol%. The polar lipid pattern of strain MSS4 consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidic acid and phosphatidylethanolamine. It possessed anteiso-C, C, C and anteiso-C as the major fatty acids (altogether representing 84.7 % of the total). The predominant isoprenoid quinone was MK-7. The cell-wall peptidoglycan contained diaminopimelic acid. 16S rRNA gene sequence analysis showed that the new isolate has 96.1 % similarity to CM1 and 17-5, 95.5 % to BH169 and lower similarity to other species. These results justify the assignment of strain MSS4 to a novel species within the genus , for which the name sp. nov. is proposed. The type strain is MSS4 (=LMG 24571 =DSM 21373).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.014233-0
2010-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/6/1432.html?itemId=/content/journal/ijsem/10.1099/ijs.0.014233-0&mimeType=html&fmt=ahah

References

  1. Antón J., Rosselló-Mora R., Rodríguez-Valera F., Amann R. 2000; Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057 [CrossRef]
    [Google Scholar]
  2. Antón J., Oren A., Benlloch S., Rodríguez-Valera F., Amann R., Rosselló-Mora R. 2002; Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491
    [Google Scholar]
  3. Burns D. G., Camakaris H. M., Jansenn P. H., Dyall-Smith M. L. 2004; Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70:5258–5265 [CrossRef]
    [Google Scholar]
  4. Cappuccino J. G., Sherman N. 1996 Microbiology: a Laboratory Manual Menlo Park, CA: Benjamin/Cummings;
    [Google Scholar]
  5. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef]
    [Google Scholar]
  6. Eder W., Schmidt M., Koch M., Garbe-Schönberg D., Huber R. 2002; Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine–seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4:758–763 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  8. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  9. Heyrman J., Vanparys B., Logan N. A., Balcaen A., Rodriguez-Diaz M., Felske A., De Vos P. 2004; Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov.and Bacillus drentensis sp. nov., from the Drentse A grasslands. Int J Syst Evol Microbiol 54:47–57 [CrossRef]
    [Google Scholar]
  10. Heyrman J., Rodriguez-Diaz M., Devos J., Felske A., Logan N. A., De Vos P. 2005; Bacillus arenosi sp. nov., Bacillus arvi sp. nov. and Bacillus humi sp. nov., isolated from soil. . Int J Syst Evol Microbiol 55:111–117 [CrossRef]
    [Google Scholar]
  11. Kallimanis A., Frillingos S., Drainas C., Koukkou A. I. 2007; Taxonomic identification, phenanthrene uptake activity, and membrane lipid alterations of the PAH degrading Arthrobacter sp. strain Sphe3. Appl Microbiol Biotechnol 76:709–717 [CrossRef]
    [Google Scholar]
  12. Kharroub K., Aguilera M., Quesada T., Morillo J. A., Ramos-Cormenzana A., Boulharouf A., Monteoliva-Sánchez M. 2006; Salicola salis sp. nov., an extremely halophilic bacterium isolated from Ezzemoul sabkha in Algeria. Int J Syst Evol Microbiol 56:2647–2652 [CrossRef]
    [Google Scholar]
  13. Lim J.-M., Jeon C. O., Lee S.-M., Xu L. H., Jiang C.-L., Kim C.-J. 2006; Bacillus salarius sp. nov., a halophilic, spore-forming bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 56:373–377 [CrossRef]
    [Google Scholar]
  14. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  15. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  16. Maturrano L., Santos F., Rosselló-Mora R., Antón J. 2006a; Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895 [CrossRef]
    [Google Scholar]
  17. Maturrano L., Valens-Vadell M., Rosselló-Mora R., Antón J. 2006b; Salicola marensis gen. nov., sp. nov., an extremely halophilic bacterium isolated from the Maras salterns in Peru. Int J Syst Evol Microbiol 56:1685–1691 [CrossRef]
    [Google Scholar]
  18. Moreno M. L., García M. T., Ventosa A., Mellado E. 2009; Characterization of Salicola sp. IC10, a lipase- and protease-producing extreme halophile. FEMS Microbiol Ecol 68:59–71 [CrossRef]
    [Google Scholar]
  19. Oren A. 2002a; Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63 [CrossRef]
    [Google Scholar]
  20. Oren A. 2002b; Molecular ecology of extremely halophilic archaea and bacteria. FEMS Microbiol Ecol 39:1–7 [CrossRef]
    [Google Scholar]
  21. Owen R. J., Hill L. R. 1979; The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists (Society for Applied Bacteriology Technical Series no. 14), 2nd edn. pp 277–296 Edited by Skinner F. A., Lovelock D. W. London: Academic Press;
    [Google Scholar]
  22. Priest F. G., Goodfellow M., Todd C. 1988; A numerical classification of the genus Bacillus . J Gen Microbiol 134:1847–1882
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  24. Sánchez-Porro C., de la Haba R. R., Soto-Ramírez N., Márquez M. C., Montalvo-Rodríguez R., Ventosa A. 2009; Description of Kushneria aurantia gen. nov., sp. nov., a novel member of the family Halomonadaceae , and a proposal for reclassification of Halomonas marisflavi as Kushneria marisflavi comb. nov., of Halomonas indalinina as Kushneria indalinina comb. nov. and of Halomonas avicenniae as Kushneria avicenniae comb. nov. Int J Syst Evol Microbiol 59:397–405 [CrossRef]
    [Google Scholar]
  25. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Stackebrandt E., Liesack W. 1993; Nucleic acids and classification. In Handbook of New Bacterial Systematics pp 152–189 Edited by Goodfellow M., O'Donnell A. G. London: Academic Press;
    [Google Scholar]
  27. Ventosa A. 2006; Unusual micro-organisms from unusual habitats: hypersaline environments. In Prokaryotic Diversity: Mechanisms and Significance (Society for General Microbiology Symposium no. 66) pp 223–253 Edited by Logan N. A., Lappin-Scott H. M., Oyston P. C. F. Cambridge: Cambridge University Press;
    [Google Scholar]
  28. Ventosa A., Gutierrez M. C., Kamekura M., Dyall-Smith M. L. 1999; Proposal to transfer Halococcus turkmenicus , Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov. Int J Syst Bacteriol 49:131–136 [CrossRef]
    [Google Scholar]
  29. Wang Q. F., Li W., Liu Y. L., Cao H. H., Li Z., Guo G. Q. 2007; Bacillus qingdaonensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a crude sea-salt sample collected near Qingdao in eastern China. Int J Syst Evol Microbiol 57:1143–1147 [CrossRef]
    [Google Scholar]
  30. Wieser M., Worliczek H., Kämpfer P., Busse H.-J. 2005; Bacillus herbersteinensis sp. nov. Int J Syst Evol Microbiol 55:2119–2123 [CrossRef]
    [Google Scholar]
  31. Xue Y., Ventosa A., Wang X., Ren P., Zhou P., Ma Y. 2008; Bacillus aidingensis sp. nov., a moderately halophilic bacterium isolated from Ai-Ding salt lake in China. Int J Syst Evol Microbiol 58:2828–2832 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.014233-0
Loading
/content/journal/ijsem/10.1099/ijs.0.014233-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error