1887

Abstract

The taxonomic positions of two gamma- and UV-ray-resistant strains isolated from radiation-polluted soil in north-west China were determined in a polyphasic study. The organisms, designated R12 and R13, were Gram-stain-positive, non-spore-forming cocci, which contained MK-8 as the major respiratory quinone and C 7 and C as major fatty acids. The cell walls of strains R12 and R13 contained ornithine. Phylogenetic analysis based on 16S rRNA gene sequences and DNA–DNA hybridizations showed that strains R12 and R13 are members of novel species belonging to the genus with DSM 20539 as the closest relative. The isolates R12 and R13 shared 97 and 97.1 % 16S rRNA gene similarity, respectively, and 29.5 and 33.3 % DNA–DNA relatedness, respectively, with DSM 20539. The DNA G+C contents of isolates R12 and R13 were 66.7 and 63.8 %, respectively. On the basis of phenotypic tests and other results, two species, sp. nov. (type strain R12 =CGMCC 1.8884 =NBRC 105665) and sp. nov. (type strain R13 =CGMCC 1.8885 =NBRC 105666), are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.015917-0
2010-09-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/9/2006.html?itemId=/content/journal/ijsem/10.1099/ijs.0.015917-0&mimeType=html&fmt=ahah

References

  1. Asker D., Awad T. S., Beppu T., Ueda K. 2008; Deinococcus misasensis and Deinococcus roseus , novel members of the genus Deinococcus , isolated from a radioactive site in Japan. Syst Appl Microbiol 31:43–49 [CrossRef]
    [Google Scholar]
  2. Brim H., Venkateswaran A., Kostandarithes H. M., Fredrickson J. K., Daly M. J. 2003; Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol 69:4575–4582 [CrossRef]
    [Google Scholar]
  3. Brooks B. W., Murray R. G. E. 1981; Nomenclature for ‘ Micrococcus radiodurans ’ and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov. including five species. Int J Syst Bacteriol 31:353–360 [CrossRef]
    [Google Scholar]
  4. Callegan R. P., Nobre M. F., McTernan P. M., Battista J. R., Navarro-González R., McKay C. P., da Costa M. S., Rainey F. A. 2008; Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments. Int J Syst Evol Microbiol 58:1252–1258 [CrossRef]
    [Google Scholar]
  5. de Groot A., Chapon V., Servant P., Christen R., Fischer-Le Saux M., Sommer S., Heulin T. 2005; Deinococcus deserti sp. nov. a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol 55:2441–2446 [CrossRef]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurements of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  7. Earl A. M., Mohundro M. M., Mian I. S., Battista J. R. 2002; The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression. J Bacteriol 184:6216–6224 [CrossRef]
    [Google Scholar]
  8. Embley T. M., O'Donnell A. G., Watt R., Rostron J. 1987; Lipid and cell wall amino acid composition in the classification of members of the genus Deinococcus . Syst Appl Microbiol 10:20–27 [CrossRef]
    [Google Scholar]
  9. Ferreira A. C., Nobre M. F., Rainey F. A., Silva M. T., Wait R., Burghardt J., Chung A. P., Da Costa M. S. 1997; Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939–947 [CrossRef]
    [Google Scholar]
  10. Goodman M., Pechère J. F. 1977; The evolution of muscular parvalbumins investigated by the maximum parsimony method. J Mol Evol 9:131–158 [CrossRef]
    [Google Scholar]
  11. Hirsch P., Gallikowski C. A., Siebert J., Peissl K., Kroppenstedt R. M., Schumann P., Stackebrandt E., Anderson R. 2004; Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst Appl Microbiol 27:636–645 [CrossRef]
    [Google Scholar]
  12. Im W.-T., Jung H.-M., Ten L. N., Kim M. K., Bora N., Goodfellow M., Lim S., Jung J., Lee S.-T. 2008; Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 58:2348–2353 [CrossRef]
    [Google Scholar]
  13. Kämpfer P., Lodders N., Huber B., Falsen E., Büsse H.-J. 2008; Deinococcus aquatilis sp. nov., isolated from water. Int J Syst Evol Microbiol 58:2803–2806 [CrossRef]
    [Google Scholar]
  14. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  15. Kroppenstedt R. M. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367 [CrossRef]
    [Google Scholar]
  16. Kumar S., Tamura K., Nei M. 2004; mega 3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  17. Lai W.-A., Kämpfer P., Arun A. B., Shen F.-T., Huber B., Rekha P. D., Young C.-C. 2006; Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L. Int J Syst Evol Microbiol 56:787–791 [CrossRef]
    [Google Scholar]
  18. Marmur J., Doty P. 1962; Determination of base composition of deoxyribonucleic acid from its denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  19. Mattimore V., Battista J. R. 1996; Radioresistance of Deinococcus radiodurans : functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637
    [Google Scholar]
  20. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  21. Peng F., Zhang L., Luo X., Dai J., An H., Tang Y., Fang C. 2009; Deinococcus xinjiangensis sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 59:709–713 [CrossRef]
    [Google Scholar]
  22. Rainey F. A., Nobre M. F., Schumann P., Stackebrandt E., da Costa M. S. 1997; Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int J Syst Bacteriol 47:510–514 [CrossRef]
    [Google Scholar]
  23. Rainey F. A., Ray K., Ferreira M., Gatz B. Z., Nobre M. F., Bagaley D., Rash B. A., Park M.-J., Earl A. M. other authors 2005; Extensive diversity of ionizing-radiation-resistant bacteria recovered from a Sonoran Desert soil and the description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71:5225–5235 [CrossRef]
    [Google Scholar]
  24. Rainey F. A., Ferreira M., Nobre M. F., Ray K., Bagaley D., Earl A. M., Battista J. R., Gómez-Silva B., McKay C. P., da Costa M. S. 2007; Deinococcus peraridilitoris sp. nov., isolated from a coastal desert. Int J Syst Evol Microbiol 57:1408–1412 [CrossRef]
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  26. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  27. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  28. Thompson B. G., Anderson R., Murray R. G. 1980; Unusual polar lipids of Micrococcus radiodurans strain Sark. Can J Microbiol 26:1408–1411 [CrossRef]
    [Google Scholar]
  29. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  30. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  32. Weon H.-Y., Kim B.-Y., Schumann P., Son J.-A., Jang J., Go S.-J., Kwon S.-W. 2007; Deinococcus cellulosilyticus sp. nov., isolated from air. Int J Syst Evol Microbiol 57:1685–1688 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.015917-0
Loading
/content/journal/ijsem/10.1099/ijs.0.015917-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error