1887

Abstract

Seven yeast strains were isolated from the body surface and galleries of , the ambrosia beetle that attacks black oak trees. Based on rDNA sequence comparisons and other taxonomic characteristics, five of the strains were identified as members of the species , and , which have been reported previously as being associated with insects. The remaining two yeast strains were proposed as representatives of two novel species, sp. nov. (type strain ATCC 62898=CBS 11547) and sp. nov. (type strain ATCC 62899=CBS 11546). sp. nov. is a close sister taxon to and assimilates methanol as a sole carbon source but lacks ascospores. On the other hand, sp. nov. is phylogenetically distinct from any other ambrosia yeast reported so far. The species was placed near and based on DNA sequence analyses, but neither of these were close sister taxa to sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.016907-0
2010-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/7/1702.html?itemId=/content/journal/ijsem/10.1099/ijs.0.016907-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Barnett J. A., Payne R. W., Yarrow D. 2000 Yeasts: Characteristics and identification , 3rd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  3. Batra L. R. 1966; Ambrosia fungi: extent of specificity to ambrosia beetles. Science 153:193–195 [CrossRef]
    [Google Scholar]
  4. Batra L. R. 1971; Two new hemiascomycetes: Pichia crossotarsi and P. microspora . Mycologia 63:994–1001 [CrossRef]
    [Google Scholar]
  5. De Koning W., Harder W. 1992; Methanol-utilizing yeasts. In Methane and Methanol Utilizers . pp 207–244 Edited by Murell J. C., Dalton H. New York: Plenum Press;
  6. Endoh R., Suzuki M., Benno Y. 2008a; Ambrosiozyma kamigamensis sp. nov. and A. neoplatypodis sp. nov. two new ascomycetous yeasts from ambrosia beetle galleries. Antonie van Leeuwenhoek 94:365–376 [CrossRef]
    [Google Scholar]
  7. Endoh R., Suzuki M., Benno Y., Futai K. 2008b; Candida kashinagacola sp. nov., C. pseudovanderkliftii sp. nov. and C. vanderkliftii sp. nov., three new yeasts from ambrosia beetle-associated sources. Antonie van Leeuwenhoek 94:389–402 [CrossRef]
    [Google Scholar]
  8. Haanstad J. O., Norris D. M. 1985; Microbial symbiotes of the ambrosia beetle Xyloterinus politus . Microb Ecol 11:267–276 [CrossRef]
    [Google Scholar]
  9. Harrington T. C. 2005; Ecology and evolution of mycophagous bark beetles and their fungal partners. In Insect fungal associations pp 257–291 Edited by Vega F. E., Blackwell M. New York: Oxford University Press;
    [Google Scholar]
  10. Hausner G., Reid J., Klassen G. R. 1993; On the subdivision of Ceratocystis sensu lato, based on partial ribosomal DNA sequences. Can J Bot 71:52–63 [CrossRef]
    [Google Scholar]
  11. Ji Z.-H., Bai F.-Y. 2008; Ogataea ganodermae sp. nov., a methanol-assimilating yeast species isolated from basidiocarps of Ganoderma sp. Int J Syst Evol Microbiol 58:1502–1506 [CrossRef]
    [Google Scholar]
  12. Jindamorakot S., Limtong S., Yongmanitchai W., Tuntirungkij M., Potacharoen W., Kawasaki H., Nakase T. 2007 Two new anamorphic yeasts, Candida thailandica sp.nov. and Candida lignicola sp. nov., isolated from insect frass in Thailand. FEMS Yeast Res 7, 1409–1414. [CrossRef]
  13. Kurtzman C. P. 1987; Two new species of Pichia from arboreal habitats. Mycologia 79:410–417 [CrossRef]
    [Google Scholar]
  14. Kurtzman C. P. 1998; Pichia E.C. Hansen emend. Kurtzman In The Yeasts, a Taxonomic Study . , 4th edn. pp 273–352 Edited by Kurtzman C. P., Fell J. W. Amsterdam: Elsevier;
  15. Kurtzman C. P. 1999; Two new members of the Saccharomycopsis clade: Saccharomycopsis microspora , comb.nov. and Candida lassenensis ,sp. nov. Mycotaxon 71:241–250
    [Google Scholar]
  16. Kurtzman C. P. 2000; Four new yeasts in the Pichia anomala clade. Int J Syst Evol Microbiol 50:395–404 [CrossRef]
    [Google Scholar]
  17. Kurtzman C. P., Fell J. W. 1998 The Yeasts, a Taxonomic Study , 4th edn. Amsterdam: Elsevier;
    [Google Scholar]
  18. Kurtzman C. P., Robnett C. J. 1998; Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73:331–371 [CrossRef]
    [Google Scholar]
  19. Kurtzman C. P., Robnett C. J., Basehoar-Powers E. 2008; Phylogenetic relationships among species of Pichia , Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res 8:939–954 [CrossRef]
    [Google Scholar]
  20. Lee S. B., Taylor J. W. 1990; Isolation of DNA from fungal mycelia and single spores. In PCR Protocols – a guide to methods and applications . pp 282–287 Edited by Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. San Diego, CA: Academic Press;
  21. Limtong S., Srisuk N., Yongmanitchai W., Yurimoto H., Nakase T. 2008; Ogataea chonburiensis sp. nov. and Ogataea nakhonphanomensis sp. nov., thermotolerant, methylotrophic yeast species isolated in Thailand, and transfer of Pichia siamensis and Pichia thermomethanolica to the genus Ogataea . Int J Syst Evol Microbiol 58:302–307 [CrossRef]
    [Google Scholar]
  22. Meyer S. A., Payne R. W., Yarrow D. 1998; Candida Berkhout. In The Yeasts, a Taxonomic Study , 4th edn. pp 454–573 Edited by Kurtzman C. P., Fell J. W. Amsterdam: Elsevier;
    [Google Scholar]
  23. Nagatsuka Y., Saito D., Sugiyama J. 2008; Ogataea neopini sp. nov. and O. corticis sp. nov., with the emendation of the ascomycete yeast genus Ogataea , and transfer of Pichia zsoltii, P. dorogensis , and P. trehaloabstinens to it. J Gen Appl Microbiol 54:353–365 [CrossRef]
    [Google Scholar]
  24. Nakase T., Ninomiya S., Imanishi Y., Nakagiri A., Kawasaki H., Limtong S. 2008; Ogataea paradorogensis sp. nov., a novel methylotrophic ascomycetous yeast species isolated from galleries of ambrosia beetles in Japan, with a close relation to Pichia dorogensis . J Gen Appl Microbiol 54:377–383 [CrossRef]
    [Google Scholar]
  25. Péter G., Tornai-Lehoczki J., Fülöp L., Dlauchy D. 2003; Six new methanol assimilating yeast species from wood material. Antonie van Leeuwenhoek 84:147–159 [CrossRef]
    [Google Scholar]
  26. Smith M. T. 1998; Ambrosiozyma van der Walt. In The Yeasts, a Taxonomic Study . , 4th edn. pp 129–133 Edited by Kurtzman C. P., Fell J. W. Amsterdam: Elsevier;
  27. Suh S.-O., Blackwell M. 2004; Three new beetle-associated yeasts in the Pichia guilliermondii clade. FEMS Yeast Res 5:87–95 [CrossRef]
    [Google Scholar]
  28. Suh S.-O., Marshall C., McHugh J. V., Blackwell M. 2003; Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts. Mol Ecol 12:3137–3145 [CrossRef]
    [Google Scholar]
  29. Suh S.-O., McHugh J. V., Pollock D. D., Blackwell M. 2005; The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res 109:261–265 [CrossRef]
    [Google Scholar]
  30. Suh S.-O., Nguyen N. H., Blackwell M. 2008; Yeasts isolated from plant-associated beetles and other insects: seven novel Candida species near Candida albicans . FEMS Yeast Res 8:88–102 [CrossRef]
    [Google Scholar]
  31. Swofford D. L. 2002 paup*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10 Sinauer Associates; Sunderland, Massachusetts, USA:
    [Google Scholar]
  32. Tatusova T. A., Madden T. L. 1999; blast 2 sequences – a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250 [CrossRef]
    [Google Scholar]
  33. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  34. van der Walt J. P. 1972; The yeast genus Ambrosiozyma gen. nov. (ascomycetes). Mycopathol Mycol Appl 46:305–316 [CrossRef]
    [Google Scholar]
  35. van der Walt J. P., Scott D. B. 1971; Saccharomycopsis synnaedendra , a new yeast from South African insect sources. Mycopathol Mycol Appl 44:101–106 [CrossRef]
    [Google Scholar]
  36. White T. J., Bruns T., Lee S., Taylor J. 1990; Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols – a guide to methods and applications . pp 315–322 Edited by Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. San Diego, CA: Academic Press;
  37. Yamada Y., Maeda K., Mikata K. 1994 The phylogenetic relationships of the hat-shaped ascospore-forming, nitrate-assimilating Pichia species, formerly classified in the genus Hansenula Sydow et Sydow, based on the partial sequences of 18S and 26S ribosomal RNAs (Saccharomycetaceae): the proposal of three new genera,Ogataea , Kuraishia , and Nakazawaea . Biosci Biotechnol Biochem 58, 1245–1257 [CrossRef]
  38. Yarrow D. 1998; Methods for the isolation, maintenance and identification of yeasts. In The Yeasts, a Taxonomic Study , 4th edn. pp 77–100 Edited by Kurtzman C. P, Fell J. W. Amsterdam: Elsevier;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.016907-0
Loading
/content/journal/ijsem/10.1099/ijs.0.016907-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error