1887

Abstract

The heterotrophic, aerobic, facultatively anaerobic under denitrifying conditions, catalase- and oxidase-positive, non-motile strain MT-CBb6A5, which was isolated from an acidic lake located in Wisconsin (USA), was characterized. The strain grew on NSY medium over a temperature range of 15–30 °C and a NaCl range of 0.0–0.3 % (w/v). The predominant fatty acids were C, Cω7, 11-methyl Cω7, feature 3 (including Cω7), and feature 2 (including C 3-OH). The DNA G+C content of the strain was 40.3 mol%. Phylogenetic analysis as well as strong similarities in phenotypic and chemotaxonomic traits indicated the affiliation with the genus . 16S rRNA gene sequence similarity values with the two described species of the genus ranged from 95.6 to 96.0 %. The strain differs from the two described species of the genus in the ability to assimilate oxalic and glycolic acids, and in the presence of the fatty acids Cω8 and C 3-OH as well as in quantitative differences in fatty acid composition. It has to be assumed that the strain shares with other free-living bacteria of the genus a planktonic lifestyle in the water column of freshwater habitats. Based on the phylogeny revealed and the chemotaxonomic and phenotypic differences from and , we propose to establish the novel species sp. nov. with the type strain MT-CBb6A5 ( = DSM 21648  = CIP 109928).

Funding
This study was supported by the:
  • Austrian Science Fund (Award P19853)
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.017350-0
2011-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/4/781.html?itemId=/content/journal/ijsem/10.1099/ijs.0.017350-0&mimeType=html&fmt=ahah

References

  1. Burkert U., Warnecke F., Babenzien D., Zwirnmann E., Pernthaler J. 2003; Members of a readily enriched proteobacterial clade are common in surface waters of a humic lake. Appl Environ Microbiol 69:6550–6559 [CrossRef]
    [Google Scholar]
  2. Crump B. C., Hobbie J. E. 2005; Synchrony and seasonality in bacterioplankton communities of two temperate rivers. Limnol Oceanogr 50:1718–1729 [CrossRef]
    [Google Scholar]
  3. Crump B. C., Armbrust E. V., Baross J. A. 1999; Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia river, its estuary, and the adjacent coastal ocean. Appl Environ Microbiol 65:3192–3204[PubMed]
    [Google Scholar]
  4. Crump B. C., Kling G. W., Bahr M., Hobbie J. E. 2003; Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl Environ Microbiol 69:2253–2268 [View Article][PubMed]
    [Google Scholar]
  5. Grossart H. P., Jezbera J., Hornak K., Hutalle K. M. L., Buck U., Simek K. 2008; Top-down and bottom-up induced shifts in bacterial abundance, production and community composition in an experimentally divided humic lake. Environ Microbiol 10:635–652 [View Article][PubMed]
    [Google Scholar]
  6. Hahn M. W. 2003; Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl Environ Microbiol 69:5248–5254 [View Article][PubMed]
    [Google Scholar]
  7. Hahn M. W., Stadler P., Wu Q. L., Pöckl M. 2004; The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 57:379–390 [View Article][PubMed]
    [Google Scholar]
  8. Hahn M. W., Pöckl M., Wu Q. L. 2005; Low intraspecific diversity in a polynucleobacter subcluster population numerically dominating bacterioplankton of a freshwater pond. Appl Environ Microbiol 71:4539–4547 [View Article][PubMed]
    [Google Scholar]
  9. Hahn M. W., Lang E., Brandt U., Wu Q. L., Scheuerl T. 2009; Emended description of the genus Polynucleobacter and the species Polynucleobacter necessarius and proposal of two subspecies, P. necessarius subsp. necessarius subsp. nov. and P. necessarius subsp. asymbioticus subsp. nov. Int J Syst Evol Microbiol 59:2002–2009 [View Article][PubMed]
    [Google Scholar]
  10. Hahn M. W., Lang E., Brandt U., Lünsdorf H., Wu Q. L., Stackebrandt E. 2010; Polynucleobacter cosmopolitanus sp. nov., free-living planktonic bacteria inhabiting freshwater lakes and rivers. Int J Syst Evol Microbiol 60:166–173 [View Article][PubMed]
    [Google Scholar]
  11. Heckmann K., Schmidt H. J. 1987; Polynucleobacter necessarius gen. nov., sp. nov., an obligately endosymbiotic bacterium living in the cytoplasm of Euplotes . Int J Syst Bacteriol 37:456–457 [View Article]
    [Google Scholar]
  12. Hiorns W. D., Methé B. A., Nierzwicki-Bauer S. A., Zehr J. P. 1997; Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences. Appl Environ Microbiol 63:2957–2960[PubMed]
    [Google Scholar]
  13. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  14. Newton R. J., Kent A. D., Triplett E. W., McMahon K. D. 2006; Microbial community dynamics in a humic lake: differential persistence of common freshwater phylotypes. Environ Microbiol 8:956–970 [View Article][PubMed]
    [Google Scholar]
  15. Percent S. F., Frischer M. E., Vescio P. A., Duffy E. B., Milano V., McLellan M., Stevens B. M., Boylen C. W., Nierzwicki-Bauer S. A. 2008; Bacterial community structure of acid-impacted lakes: what controls diversity?. Appl Environ Microbiol 74:1856–1868 [View Article][PubMed]
    [Google Scholar]
  16. Salcher M. M., Pernthaler J., Zeder M., Psenner R., Posch T. 2008; Spatio-temporal niche separation of planktonic Betaproteobacteria in an oligo-mesotrophic lake. Environ Microbiol 10:2074–2086 [View Article][PubMed]
    [Google Scholar]
  17. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  18. Shaw A. K., Halpern A. L., Beeson K., Tran B., Venter J. C., Martiny J. B. 2008; It’s all relative: ranking the diversity of aquatic bacterial communities. Environ Microbiol 10:2200–2210 [View Article][PubMed]
    [Google Scholar]
  19. Springer N., Amann R., Ludwig W., Schleifer K. H., Schmidt H. 1996; Polynucleobacter necessarius, an obligate bacterial endosymbiont of the hypotrichous ciliate Euplotes aediculatus, is a member of the beta-subclass of Proteobacteria . FEMS Microbiol Lett 135:333–336[PubMed]
    [Google Scholar]
  20. Stamatakis A., Hoover P., Rougemont J. A. 2008; A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57:758–771 [View Article][PubMed]
    [Google Scholar]
  21. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  22. Tóth E. M., Kéki Z., Homonnay Z. G., Borsodi A. K., Márialigeti K., Schumann P. 2008; Nocardioides daphniae sp. nov., isolated from Daphnia cucullata (Crustacea: Cladocera). Int J Syst Evol Microbiol 58:78–83 [View Article][PubMed]
    [Google Scholar]
  23. Vannini C., Pöckl M., Petroni G., Wu Q. L., Lang E., Stackebrandt E., Schrallhammer M., Richardson P. M., Hahn M. W. 2007; Endosymbiosis in statu nascendi: close phylogenetic relationship between obligately endosymbiotic and obligately free-living Polynucleobacter strains (Betaproteobacteria). Environ Microbiol 9:347–359 [View Article][PubMed]
    [Google Scholar]
  24. Watanabe K., Komatsu N., Ishii Y., Negishi M. 2009; Effective isolation of bacterioplankton genus Polynucleobacter from freshwater environments grown on photochemically degraded dissolved organic matter. FEMS Microbiol Ecol 67:57–68 [View Article][PubMed]
    [Google Scholar]
  25. Wu Q. L., Hahn M. W. 2006; Differences in structure and dynamics of Polynucleobacter communities in a temperate and a subtropical lake, revealed at three phylogenetic levels. FEMS Microbiol Ecol 57:67–79 [View Article][PubMed]
    [Google Scholar]
  26. Zwart G., Crump B. C., Kamst-van Agterveld M. P., Hagen F., Han S.-K. 2002; Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.017350-0
Loading
/content/journal/ijsem/10.1099/ijs.0.017350-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error