1887

Abstract

Two Gram-negative-staining, aerobic, non-motile, rod-shaped bacteria, designated strains FFA1 and FFA3, and belonging to the class were isolated from the gastrointestinal tract of adult flesh flies (Diptera: Sarcophagidae). Phylogenetic analysis of 16S rRNA gene sequence data placed these two strains within the genus with similarities of 98.6 % (FFA1) and 99.35 % (FFA3) to L1/68. The level of gene sequence similarity between strains FFA1 and FFA3 was 99 %, 97.15 % and 78.1 % based on the 16S rRNA, 23S rRNA and gene sequences, respectively. Strains FFA1 and FFA3 shared 24 % DNA–DNA relatedness. DNA–DNA hybridization revealed a very low level of relatedness between the novel strains (22 % for strain FFA1 and 44 % for strain FFA3) and . L1/68 genomic DNA. The respiratory quinone was Q-8 in both novel strains. The DNA G+C contents were 41.1 mol% and 40.1 mol% for strains FFA1 and FFA3, respectively. The cell membrane of both strains consisted of phosphatidylglycerol, phosphatidylethanolamine, phospholipids and aminophospholipid. The major fatty acids for both strains were C, summed feature 8 (Cω7 and/or Cω6), CyCω8 and C. The results of DNA–DNA hybridization between the two new strains and L1/68, in combination with phylogenetic, chemotaxonomic, biochemical and electron microscopic data, demonstrated that strains FFA1 and FFA3 represented two novel species of the genus for which the names sp. nov. (type strain FFA1 = DSM 22309 = KCTC 22643 = NCIM 5325) and sp. nov. (type strain FFA3 = DSM 22310 = KCTC 22644 = NCIM 5326) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.018622-0
2011-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/6/1360.html?itemId=/content/journal/ijsem/10.1099/ijs.0.018622-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  2. Bauer A. W., Kirby W. M. M., Sherris J. C., Turck M. 1966; Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496[PubMed]
    [Google Scholar]
  3. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917[PubMed] [CrossRef]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  5. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  6. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45:316–354[PubMed]
    [Google Scholar]
  7. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230[PubMed] [CrossRef]
    [Google Scholar]
  8. Cowan S. T., Steel K. J. 1974 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  9. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  10. De Luna C. J., Moro C. V., Guy J. H., Zenner L., Sparagano O. A. 2009; Endosymbiotic bacteria living inside the poultry red mite (Dermanyssus gallinae). Exp Appl Acarol 48:105–113 [View Article][PubMed]
    [Google Scholar]
  11. Elek S. D., Levy E. 1954; The nature of discrepancies between haemolysins in culture filtrates and plate haemolysin patterns of staphylococci. J Pathol Bacteriol 68:31–40 [View Article][PubMed]
    [Google Scholar]
  12. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  13. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K. 1997; Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 47:1129–1133 [View Article][PubMed]
    [Google Scholar]
  15. Holding A. J., Collee J. G. 1971; Routine biochemical tests. Methods Microbiol 6A:1–5
    [Google Scholar]
  16. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 66:24–26[PubMed]
    [Google Scholar]
  17. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  18. Juteau P., Tremblay D., Villemur R., Bisaillon J. G., Beaudet R. 2004; Analysis of the bacterial community inhabiting an aerobic thermophilic sequencing batch reactor (AT-SBR) treating swine waste. Appl Microbiol Biotechnol 66:115–122 [View Article][PubMed]
    [Google Scholar]
  19. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  20. Koser S. A. 1923; Utilization of the salts of organic acids by the colon-aerogenes group. J Bacteriol 8:493–520[PubMed]
    [Google Scholar]
  21. Kumar S. K., Tamura K., Nei M. 2004; MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163 [View Article][PubMed]
    [Google Scholar]
  22. Maurin M., Delbano J. N., Mackaya L., Colomb H., Guier C., Mandjee A., Recule C., Croize J. 2007; Human infection with Schineria larvae . Emerg Infect Dis 13:657–659 [View Article][PubMed]
    [Google Scholar]
  23. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  24. Møller V. 1954; Activity determination of amino acid decarboxylases in Enterobacteriaceae. . Acta Pathol Microbiol Scand 34:102–114 [View Article][PubMed]
    [Google Scholar]
  25. O’Brien M., Colwell R. R. 1987; A rapid test for chitinase activity that uses 4-methylumbelliferyl-N-acetyl-β-D-glucosaminide. Appl Environ Microbiol 53:1718–1720[PubMed]
    [Google Scholar]
  26. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [View Article][PubMed]
    [Google Scholar]
  27. Roudiere L., Jean-Pierre H., Comte C., Zorgniotti I., Marchandin H., Jumas-Bilak E. 2007; Isolation of Schineria sp. from a man. Emerg Infect Dis 13:659–661 [View Article][PubMed]
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  29. Simmons J. S. 1926; A culture medium for differentiating organisms of typhoid colon aerogenes groups and for isolation of certain fungi. J Infect Dis 39:209–214 [View Article]
    [Google Scholar]
  30. Smibert R. M., Krieg N. R. 1994; Phenotypic characterisation. In Methods for General and Molecular Bacteriology pp. 603–711 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Spurr A. R. 1969; A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43 [View Article][PubMed]
    [Google Scholar]
  32. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  33. Tarrand J. J., Gröschel D. H. M. 1982; Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 16:772–774[PubMed]
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  35. Tindall B. J., Sikorski J., Smibert R. M., Kreig N. R. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd edn. pp. 330–393 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Tóth E., Kovács G., Schumann P., Kovács A. L., Steiner U., Halbritter A., Márialigeti K. 2001; Schineria larvae gen. nov., sp. nov., isolated from the 1st and 2nd larval stages of Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int J Syst Evol Microbiol 51:401–407[PubMed]
    [Google Scholar]
  37. Tóth E. M., Hell E., Kovács G., Borsodi A. K., Márialigeti K. 2006; Bacteria isolated from the different developmental stages and larval organs of the obligate parasitic fly, Wohlfahrtia magnifica (Diptera: Sarcophagidae). Microb Ecol 51:13–21 [View Article][PubMed]
    [Google Scholar]
  38. Tóth E. M., Borsodi A. K., Euzéby J. P., Tindall B. J., Márialigeti K. 2007; Proposal to replace the illegitimate genus name Schineria Toth et al. 2001 with the genus name Ignatzschineria gen. nov. and to replace the illegitimate combination Schineria larvae Toth et al. 2001 with Ignatzschineria larvae comb. nov. Int J Syst Evol Microbiol 57:179–180 [View Article][PubMed]
    [Google Scholar]
  39. Tóth E. M., Schumann P., Borsodi A. K., Kéki Z., Kovács A. L., Márialigeti K. 2008; Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int J Syst Evol Microbiol 58:976–981 [View Article][PubMed]
    [Google Scholar]
  40. Valiente Moro C., Thioulouse J., Chauve C., Normand P., Zenner L. 2009; Bacterial taxa associated with the hematophagous mite Dermanyssus gallinae detected by 16S rRNA PCR amplification and TTGE fingerprinting. Res Microbiol 160:63–70 [View Article][PubMed]
    [Google Scholar]
  41. Van Camp G., Chapelle S., De Wachter R. 1993; Amplification and sequencing of variable regions in bacterial 23S ribosomal RNA genes with conserved primer sequences. Curr Microbiol 27:147–151 [View Article][PubMed]
    [Google Scholar]
  42. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968
    [Google Scholar]
  43. Versalovic J., Koeuth T., Lupski J. R. 1991; Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831 [View Article][PubMed]
    [Google Scholar]
  44. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  45. Xia X., Xie Z. 2001; DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371–373 [View Article][PubMed]
    [Google Scholar]
  46. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109[PubMed]
    [Google Scholar]
  47. Zhang Z., Schwartz S., Wagner L., Miller W. 2000; A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.018622-0
Loading
/content/journal/ijsem/10.1099/ijs.0.018622-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error