1887

Abstract

Two isolates from rhizosphere soil of cotton, designated Gh-67 and Gh-48, which produced large amounts of extracellular polysaccharide and possessed plant-growth-promoting traits, were characterized phenotypically and genotypically. The strains were Gram-negative and cells were non-motile rods that grew optimally at 28 °C and grew between pH 4 and 7. 16S rRNA gene sequence analysis of strains Gh-67 and Gh-48 placed them in the genus , with pairwise sequence similarity between them and type strains from related genera ranging from 93.9 to 98.2 %. The major fatty acids were iso-C, C and summed feature 3 (C 7c and/or iso-C 2-OH). The strains contained MK-7 as the major isoprenoid quinone. The DNA G+C contents of strains Gh-67 and Gh-48 were 46.7 and 44.2 mol%, respectively. The low DNA–DNA hybridization value (18 %) and a number of phenotypic differences between strains Gh-48 and Gh-67 indicated that they represent two separate species. Results of phenotypic, phylogenetic and genotypic analysis revealed that the strains were separated from the species of described to date. Therefore, strains Gh-67 and Gh-48 represent novel species of , for which we propose the names sp. nov. (type strain Gh-67 =NCIMB 14470 =KCTC 22380) and sp. nov. (type strain Gh-48 =NCIMB 14471 =KCTC 22379).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.018713-0
2010-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/10/2451.html?itemId=/content/journal/ijsem/10.1099/ijs.0.018713-0&mimeType=html&fmt=ahah

References

  1. An D.-S., Yin C.-R., Lee S.-T., Cho C.-H. 2009; Mucilaginibacter daejeonensis sp. nov., isolated from dried rice straw. Int J Syst Evol Microbiol 59:1122–1125 [CrossRef]
    [Google Scholar]
  2. Atlas R. M. 1993; Handbook of Microbiological Media. pp 196–843 Edited by Parks L. C. Boca Raton, FL: CRC Press;
  3. Baik K. S., Park S. C., Kim E. M., Lim C. H., Seong C. N. 2010; Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter . Int J Syst Evol Microbiol 60:134–139 [CrossRef]
    [Google Scholar]
  4. Blaha D., Prigent-Combaret C., Sajjad Mirza M., Moënne-Loccoz Y. 2006; Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470 [CrossRef]
    [Google Scholar]
  5. Bozzola J. J., Russell L. D. 1998 Electron Microscopy, 2nd edn. Sudbury, MA: Jones & Bartlett;
    [Google Scholar]
  6. Chanprame S., Todd J. J., Widholm J. M. 1996; Prevention of pink-pigmented methylotrophic bacteria ( Methylobacterium mesophilicum ) contamination of plant tissue cultures. Plant Cell Rep 16:222–225 [CrossRef]
    [Google Scholar]
  7. Egamberdieva D., Kamilova F., Validov S., Gafurova L., Kucharova Z., Lugtenberg B. 2008; High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9
    [Google Scholar]
  8. Fautz E., Reichenbach H. 1980; A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8:87–91 [CrossRef]
    [Google Scholar]
  9. Floyd M. M., Tang J., Kane M., Emerson D. 2005; Captured diversity in a culture collection: case study of the geographic and habitat distribution of environmental isolates held at the American Type Culture Collection. Appl Environ Microbiol 71:2813–2823 [CrossRef]
    [Google Scholar]
  10. Gerhardt P. R., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Ghosh S., Penterman J. N., Little R. D., Chavez R., Glick B. R. 2003; Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris . Plant Physiol Biochem 41:277–281 [CrossRef]
    [Google Scholar]
  12. Glick B. R., Jacobson C. B., Schwarze M. M. K., Pasternak J. J. 1994; 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can J Microbiol 40:911–915 [CrossRef]
    [Google Scholar]
  13. Glick B. R., Patten C. L., Holguin G., Penrose D. M. 1999 Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria London: Imperial College Press;
    [Google Scholar]
  14. Green P. N., Bousfield I. J. 1982; A taxonomic study of some Gram-negative facultatively methylotrophic bacteria. J Gen Microbiol 128:623–638
    [Google Scholar]
  15. Jeon Y., Lee S.-S., Chung B.-S., Kim J.-M., Bae J.-W., Park S.-K., Jeon C. O. 2009; Mucilaginibacter oryzae sp. nov., isolated from soil of a rice paddy. Int J Syst Evol Microbiol 59:1451–1454 [CrossRef]
    [Google Scholar]
  16. Kouker G., Jaeger K.-E. 1987; Specific and sensitive plate assay for bacterial lipase. Appl Environ Microbiol 53:211–213
    [Google Scholar]
  17. Kroppenstedt R. M. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationery phases. J Liq Chromatogr 5:2359–2367 [CrossRef]
    [Google Scholar]
  18. Li J., Ovakim D. H., Charles T. C., Glick B. R. 2000; An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr Microbiol 41:101–105 [CrossRef]
    [Google Scholar]
  19. Luo X., Zhang L., Dai J., Liu M., Zhang K., An H., Fang C. 2009; Mucilaginibacter ximonensis sp. nov., isolated from Tibetan soil. Int J Syst Evol Microbiol 59:1447–1450 [CrossRef]
    [Google Scholar]
  20. Madhaiyan M., Poonguzhali S., Ryu J.-H., Sa T.-M. 2006; Regulation of ethylene levels in canola ( Brassica campestris ) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense . Planta 224:268–278 [CrossRef]
    [Google Scholar]
  21. Madhaiyan M., Kim B.-Y., Poonguzhali S., Kwon S.-W., Song M.-H., Ryu J.-H., Go S.-J., Koo B.-S., Sa T.-M. 2007a; Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int J Syst Evol Microbiol 57:326–331 [CrossRef]
    [Google Scholar]
  22. Madhaiyan M., Poonguzhali S., Sa T.-M. 2007b; Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato ( Lycopersicon esculentum L.). Chemosphere 69:220–228 [CrossRef]
    [Google Scholar]
  23. Madhaiyan M., Poonguzhali S., Kwon S.-W., Sa T.-M. 2009; Methylobacterium phyllosphaerae sp. nov., a pink-pigmented, facultative methylotroph from rice. Int J Syst Evol Microbiol 59:22–27 [CrossRef]
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  25. Pankratov T. A., Tindall B. J., Liesack W., Dedysh S. N. 2007; Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov.,pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 57:2349–2354 [CrossRef]
    [Google Scholar]
  26. Penrose D. M., Glick B. R. 2003; Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15 [CrossRef]
    [Google Scholar]
  27. Poonguzhali S., Madhaiyan M., Sa T. 2006; Cultivation-dependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris ssp pekinensis and screening of traits for potential plant growth promotion. Plant Soil 286:167–180 [CrossRef]
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  29. Sasser M. 1990; Identification of bacteria through fatty acid analysis. In Methods in Phytobacteriology pp 199–204 Edited by Klement Z., Rudolph K., Sands D. C. Budapest: Akademiai Kiado;
    [Google Scholar]
  30. Seldin L., Dubnau D. 1985; Deoxyribonucleic acid homology among Bacillus polymyxa , Bacillus macerans , Bacillus azotofixans , and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 35:151–154 [CrossRef]
    [Google Scholar]
  31. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  32. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J. 1998; Classification of heparinolytic bacteria into a new genus, Pedobacter , comprising four species: Pedobacter heparinus comb.nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov.Proposal of the family Sphingobacteriaceae . Int J Syst Bacteriol 48:165–177 [CrossRef]
    [Google Scholar]
  33. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  34. Ten L. N., Im W.-T., Kim M.-K., Kang M.-S., Lee S.-T. 2004; Development of a plate technique for screening of polysaccharide degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [CrossRef]
    [Google Scholar]
  35. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  36. Urai M., Aizawa T., Nakagawa Y., Nakajima M., Sunairi M. 2008; Mucilaginibacter kameinonensis sp. nov., isolated from garden soil. Int J Syst Evol Microbiol 58:2046–2050 [CrossRef]
    [Google Scholar]
  37. Vessey J. K. 2003; Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586 [CrossRef]
    [Google Scholar]
  38. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  39. Whipps J. M. 2001; Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511 [CrossRef]
    [Google Scholar]
  40. Whittenbury R., Davies S. L., Wilkinson J. F. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.018713-0
Loading
/content/journal/ijsem/10.1099/ijs.0.018713-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error