1887

Abstract

A Gram-negative, non-spore-forming, motile, facultatively anaerobic bacterium, designated strain MJ06, was isolated from oil-contaminated soil and was characterized taxonomically by using a polyphasic approach. Strain MJ06 contained ubiquinone Q-8 as the major respiratory lipoquinone, putrescine as the predominant polyamine and phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol as major polar lipids. The G+C content of the genomic DNA of strain MJ06 was 66.2 mol%. The major fatty acids were summed feature 4 (C 7 and/or iso-C 2-OH; 32.5 %), C (22.8 %) and summed feature 7 (one or more of C 7, C 9 and C 12; 14.9 %). Comparative 16S rRNA gene sequence analysis showed that strain MJ06 belonged to the family , class , and joined the evolutionary radiation enclosed by the genus . Levels of 16S rRNA gene sequence similarity between strain MJ06 and its phylogenetically closest relatives, NKNTAU, 54Pin, DCY36 and Ho-11, were 98.6, 98.3, 97.8 and 97.3 %, respectively. Levels of similarity between strain MJ06 and the type strains of all other recognized species in the family were below 95.0 %. Strain MJ06 exhibited relatively low levels of DNA–DNA relatedness with respect to DSM 12141 (52 %), DSM 11046 (31 %), KCTC 22398 (18 %) and KCTC 12197 (15 %). On the basis of its phenotypic and genotypic properties together with phylogenetic distinctiveness, strain MJ06 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MJ06 (=KCTC 22454 =JCM 16240).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.018887-0
2010-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/9/2056.html?itemId=/content/journal/ijsem/10.1099/ijs.0.018887-0&mimeType=html&fmt=ahah

References

  1. Atlas R. M. 1993 Handbook of Microbiological Media Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  2. Baek S.-H., Kim K.-H., Yin C.-R., Jeon C. O., Im W.-T., Kim K.-K., Lee S.-T. 2003; Isolation and characterization of bacteria capable of degrading phenol and reducing nitrate under low-oxygen conditions. Curr Microbiol 47:462–466
    [Google Scholar]
  3. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  4. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  5. Cappuccino J. G., Sherman N. 2002 Microbiology: a Laboratory Manual, 6th edn. Menlo Park, CA: Benjamin/Cummings;
    [Google Scholar]
  6. Denger K., Laue H., Cook A. M. 1997; Anaerobic taurine oxidation: a novel reaction by a nitrate-reducing Alcaligenes sp. Microbiology 143:1919–1924 [CrossRef]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  9. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  10. Foss S., Heyen U., Harder J. 1998; Alcaligenes defragrans sp. nov., description of four strains isolated on alkenoic monoterpenes ((+)-menthene, α -pinene, 2-carene, and α -phellandrene) and nitrate. Syst Appl Microbiol 21:237–244 [CrossRef]
    [Google Scholar]
  11. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  12. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [CrossRef]
    [Google Scholar]
  13. Kämpfer P., Denger K., Cook A. M., Lee S.-T., Jäckel U., Denner E. B. M., Busse H.-J. 2006; Castellaniella gen. nov., to accommodate the phylogenetic lineage of Alcaligenes defragrans , and proposal of Castellaniella defragrans gen.nov., comb. nov. and Castellaniella denitrificans sp. nov. Int J Syst Evol Microbiol 56:815–819 [CrossRef]
    [Google Scholar]
  14. Kim M. K., Im W.-T., Ohta H., Lee M., Lee S.-T. 2005; Sphingopyxis granuli sp. nov., a β -glucosidase-producing bacterium in the family Sphingomonadaceae in α -4 subclass of the Proteobacteria . J Microbiol 43:152–157
    [Google Scholar]
  15. Kim M. K., Srinivasan S., Kim Y.-J., Yang D.-C. 2009; Castellaniella ginsengisoli sp. nov., a β -glucosidase-producing bacterium. Int J Syst Evol Microbiol 59:2191–2194 [CrossRef]
    [Google Scholar]
  16. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  17. Lee M., Lee H.-W., Im W.-T., Ten L. N., Oh H. W., Liu Q.-M., Lee S.-T. 2008; Sphingopyxis ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 58:2342–2347 [CrossRef]
    [Google Scholar]
  18. Liu Q.-M., Ten L. N., Im W.-T., Lee S.-T. 2008; Castellaniella caeni sp. nov., a denitrifying bacterium isolated from sludge of a leachate treatment plant. Int J Syst Evol Microbiol 58:2141–2146 [CrossRef]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  20. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  21. Moore D. D., Dowhan D. 1995; Preparation and analysis of DNA. In Current Protocols in Molecular Biology pp 2–11 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  23. Sasser M. 1990; Identification of bacteria through fatty acid analysis. In Methods in Phytobacteriology pp 199–204 Edited by Klement Z., Rudolph K., Sands D. C. Budapest: Akademiai Kaido;
    [Google Scholar]
  24. Schenkel E., Berlaimont V., Dubois J., Helson-Cambier M., Hanocq M. 1995; Improved high-performance liquid chromatographic method for the determination of polyamines as their benzoylated derivatives: application to P388 cancer cells. J Chromatogr B Biomed Appl 668:189–197 [CrossRef]
    [Google Scholar]
  25. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  26. Stolz A., Bürger S., Kuhm A., Kämpfer P., Busse H.-J. 2005; Pusillimonas noertemannii gen. nov., sp. nov., a new member of the family Alcaligenaceae that degrades substituted salicylates. Int J Syst Evol Microbiol 55:1077–1081 [CrossRef]
    [Google Scholar]
  27. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetic analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  28. Ten L. N., Im W.-T., Kim M.-K., Kang M.-S., Lee S.-T. 2004; Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [CrossRef]
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.018887-0
Loading
/content/journal/ijsem/10.1099/ijs.0.018887-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error