1887

Abstract

A Gram-negative bacterium, designated P2, was isolated from the biofilm developed on the inner surface of an ultrapure cooling water system in a Hungarian power plant and was characterized by a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain P2 was affiliated with the family ‘’ in the phylum . Its closest relative was CL-GP79 (88.7 % 16S rRNA gene sequence similarity) followed by TW5 (86.5 %), NO-502 (86.4 %), GFA-11 (86.3 %) and DSM 103 (85.4 %). Cells of strain P2 were facultatively anaerobic, non-motile rods. The major fatty acids were C 5 (42.5 %), iso-C 2-OH (17.2 %), iso-C 3-OH (16.1 %) and iso-C (8.5 %). The major menaquinone was MK-7 and the predominant polar lipid was phosphatidylethanolamine. The DNA G+C content was 54.5 mol%. Thus, the phenotypic and genotypic analyses clearly showed that strain P2 is considerably different from members of other genera in the family ‘’. Based on these results, it is concluded that strain P2 represents a novel species in a new genus, for which the name gen. nov., sp. nov. is proposed, with type strain P2 (=DSM 21668 =NCAIM B 02328).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.019398-0
2010-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/11/2567.html?itemId=/content/journal/ijsem/10.1099/ijs.0.019398-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Branda S. S., Vik A., Friedman L., Kolter R. 2005; Biofilms: the matrix revisited. Trends Microbiol 13:20–26 [CrossRef]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  4. Claus M. 1992; A standardised Gram staining procedure. World J Microbiol Biotechnol 8:451–452 [CrossRef]
    [Google Scholar]
  5. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [CrossRef]
    [Google Scholar]
  6. Cottrell M. T., Kirchman D. L. 2000; Natural assemblages of marine proteobacteria and members of the Cytophaga–Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66:1692–1697 [CrossRef]
    [Google Scholar]
  7. Cowan S. T., Steel K. J. 1974 Manual for the Identification of Medical Bacteria, 2nd edn. London: Cambridge University Press;
    [Google Scholar]
  8. Furuhata K., Kato Y., Goto K., Saitou K., Sugiyama J., Hara M., Fukuyama M. 2008; Identification of pink-pigmented bacteria isolated from environmental water samples and their biofilm formation abilities. Biocontrol Sci 13:33–39 [CrossRef]
    [Google Scholar]
  9. Gromov B. V. 1963; A new bacterium of the genus Microcyclus . Dokl Akad Nauk SSSR 152:733–734 (in Russian)
    [Google Scholar]
  10. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef]
    [Google Scholar]
  11. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K. 1997; Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 47:1129–1133 [CrossRef]
    [Google Scholar]
  12. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 66:24–26
    [Google Scholar]
  13. Hwang C. Y., Cho B. C. 2006; Flectobacillus lacus sp. nov., isolated from a highly eutrophic pond in Korea. Int J Syst Evol Microbiol 56:1197–1201 [CrossRef]
    [Google Scholar]
  14. Kämpfer P., Lodders N., Busse H.-J. 2009; Arcicella rosea sp. nov., isolated from tap water. Int J Syst Evol Microbiol 59:341–344 [CrossRef]
    [Google Scholar]
  15. Kirchman D. L. 2002; The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100
    [Google Scholar]
  16. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  18. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas , Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [CrossRef]
    [Google Scholar]
  19. Nikitin D. I., Strompl C., Oranskaya M. S., Abraham W. R. 2004; Phylogeny of the ring-forming bacterium Arcicella aquatica gen.nov., sp. nov. ( ex Nikitin et al. 1994), from a freshwater neuston biofilm. Int J Syst Evol Microbiol 54:681–684 [CrossRef]
    [Google Scholar]
  20. Rickard A. H., Stead A. T., O'May G. A., Lindsay S., Banner M., Handley P. S., Gilbert P. 2005; Adhaeribacter aquaticus gen. nov., sp. nov., a Gram-negative isolate from a potable water biofilm. Int J Syst Evol Microbiol 55:821–829 [CrossRef]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  22. Sheu S.-Y., Chiu T. F., Cho N.-T., Chou J.-H., Sheu D.-S., Arun A. B., Young C.-C., Chen C. A., Wang J.-T., Chen W.-M. 2009; Flectobacillus roseus sp. nov., isolated from freshwater in Taiwan. Int J Syst Evol Microbiol 59:2546–2551 [CrossRef]
    [Google Scholar]
  23. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization.. In Methods for General and Molecular Bacteriology pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Stead D. E., Sellwood J. E., Wilson J., Viney I. 1992; Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 72:315–321 [CrossRef]
    [Google Scholar]
  25. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  26. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  27. Tarrand J. J., Gröschel D. H. 1982; Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 16:772–774
    [Google Scholar]
  28. Yamada K., Komagata K. 1972; Taxonomic studies on coryneform bacteria. IV. Morphological, cultural, biochemical, and physiological characteristics. J Gen Appl Microbiol 18:399–416 [CrossRef]
    [Google Scholar]
  29. Zwart G., Crump B. C., Kamst-Van Agterveld M. P., Hagen F., Han S.-K. 2002; Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.019398-0
Loading
/content/journal/ijsem/10.1099/ijs.0.019398-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error